簡易檢索 / 詳目顯示

研究生: 謝澄寬
Cheng-Kuan Hsieh
論文名稱: 於IEEE 802.16j多重躍進網路之合作通訊與動態夥伴選取演算法
Cooperative Communications with Adaptive Partner Selection Algorithm in IEEE 802.16j Multihop Relay Networks
指導教授: 陳志成
Jyh-Cheng Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 34
中文關鍵詞: IEEE 802.16j合作通訊夥伴選取
外文關鍵詞: IEEE 802.16j, Cooperative Communications, Partner Selection
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無線網路環境中,變動且不穩定的頻道條件嚴重影響通訊服務的品質。當行動節點遇到嚴重的訊號干擾時,會無法順利將資料傳送出去,導致無法滿足應用程式所需要的服務品質。而干擾的出現,會進一步降低多重躍進網路架構下的效能。IEEE 802.16j是相當受注目的多重躍進網路標準。它藉由中繼站來傳遞基地台與行動節點間的訊息,以提供以下優勢:網路覆蓋範圍的增加,吞吐量及網路能力的提升等等。IEEE 802.16j的排程服務機制會周期性的分配頻寬給整條多重躍進路徑的每一段傳輸。一旦行動節點遇到了不好的無線訊號,則第一段傳輸的失敗,就會導致分配給整條多重躍進路徑的頻寬都被浪費,降低頻寬的使用率。這不僅破壞服務品質的協議,更大大地降低系統的效能。本論文提出一合作式傳遞機制來克服IEEE 802.16j無線訊號固有的不穩定性。也就是說,一個遇到不好之無線訊號的行動節點可以藉由尋找另一個無線訊號良好的行動節點來幫忙傳遞自己的資料到目的地。另外,為了找出一個具有最佳能力條件的合作夥伴,本論文同時提出一動態夥伴選取演算法來達到此目的。模擬的結果根據封包延遲時間,封包延遲時間變化量,系統吞吐量以及封包遺失率來支持本論文所提的方法可以達到更高的效能。


    The inherent property of fluctuant channel conditions in the wireless networks influences the Quality-of-Service (QoS) severely. The Mobile Stations (MS) suffering from rigorous interference could not deliver data successfully and fail to achieve the QoS required by the applications. The occurrence of interference would worsen the performance especially in multihop relay networks. IEEE 802.16j is a promising Multihop Relay (MR) networks which enhance coverage, throughput and system capacity of IEEE 802.16e networks by deploying Relay Stations (RS) to relay data between MSs and the Multihop Relay BS (MR-BS). The scheduling services in IEEE 802.16j may allocate the bandwidth periodically without explicit bandwidth request to each hop along the path between the source and the destination. Once the MS encounters low channel quality in access link, the whole resources scheduled for the MS will waste. This not only breaks the QoS agreements but greatly decreases the system performance. In this paper, we propose a cooperative relaying mechanism to overcome the unstable channel conditions in IEEE 802.16j MR networks. Therefore, a user that is currently experiencing bad channels could survive if a cooperative partner with good channels is willing to relay its data to the destination. In order to find out a cooperative partner with best capacity to relay data, we also propose an adaptive partner selection algorithm. Extensive simulations highlight the superiority of the proposed solutions in terms of packet delay, jitter, system throughput, and packet loss rate.

    Acknowledgments . . . . . . . . . . . . . . . . iii Abstract . . . . . . . . . . . . . . . . . . . .iv List of Tables . . . . . . . . . . . . . . . . .viii List of Figures . . . . . . . . . . . . . . . . ix 1. Introduction . . . . . . . . . . . . . . . . 1 2. Background . . . . . . . . . . . . . . . . . 4 2.1. IEEE 802.16j Multihop Relay Networks . . . 4 2.2. Cooperative Communications . . . . . . . . 7 3. Related Work . . . . . . . . . . . . . . . . 9 4. Proposed Method . . . . . . . . . . . . . . .10 4.1. Backhaul Cooperation Request . . . . . . . 12 4.2. Adaptive Partner Selection Algorithm . . . 14 4.2.1. Preprocess Phase . . . . . . . . . . . . 15 4.2.2. Selection Phase . . . . . . . . . . . . .17 5. Performance Evaluation . . . . . . . . . . . 20 5.1. Experiment 1: A Simple Example of Cooperative Communications . . . . . . . . . . . . . . . . . . . . . 23 5.2. Experiment 2: Effects of Cooperative Communications and Adaptive Partner Selection with TCP Flow . . . 25 5.3. Experiment 3: Effects of Cooperative Communications and Adaptive Partner Selection with UDP Flow . . . 28 6. Conclusion . . . . . . . . . . . . . . . . . 31 Bibliography . . . . . . . . . . . . . . . . . .32

    [1] “IEEE Standard for Local and Metropolitan Area Networks, Part 16: Air interface for fixed and mobile broadband wireless access systems, amendment for physical and medium access control layers for combined fixed and mobile operation in licensed bands.” IEEE 802.16e-2005, Feb. 2006.
    [2] “Air interface for fixed broadband wireless access systems.” IEEE Std 802.16-2004, Oct. 2004.
    [3] “IEEE Standard for Local and metropolitan area networks; Part 16: Air Interface for Fixed and Mobile BroadbandWireless Access Systems Multihop Relay Specification.” IEEE P802.16j/D2, Dec. 2007.
    [4] J. Laneman, D. Tse, and G. Wornell, “Cooperative diversity in wireless networks: Efficient protocols and outage behavior,” IEEE Trans. Inform. Theory, vol. 50, pp. 3062–3080, Dec. 2004. [5] D. Soldani and S. Dixit, “Wireless relays for broadband access,” IEEE Commun. Mag., vol. 46, pp. 58–66, Mar. 2008.
    [6] S. Buchegger and J. L. Boudec, “Performance analysis of the CONFIDANT protocol: cooperation of nodes–fairness in dynamic ad-hoc networks,” in Proc. of ACM Mobi-Hoc, 2002.
    [7] M. Felegyhazi, K.-P. Hubaux, and L. Buttyan, “Nash equilibria of packet forwarding strategies in wireless ad hoc networks,” IEEE Trans. Mobile Comput., vol. 5, pp. 463–476, May 2006.
    [8] N. B. Salem, L. Buttyan, J. Hubaux, and M. Jakobsson, “A charging and rewarding scheme for packet forwarding in multi-hop cellular networks,” in Proc. of ACM Mobi-Hoc, pp. 13–24, 2003.
    [9] S. Eidenbenz, G. Resta, and P. Santi, “The COMMIT protocol for truthful and costefficient routing in ad hoc networks with selfish nodes,” IEEE Trans. Mobile Comput., vol. 7, pp. 19–33, Jan. 2008.
    [10] J. G. Proakis, “Digital Communications, 4th ed,” in New York: McGraw-Hill, Inc., 2001.
    [11] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity–part I: System description” and “User cooperation diversity–part II: Implementation aspects and performance analysis,” IEEE Trans. Commun., vol. 51, pp. 1927–1938, Nov. 2003.
    [12] A. Sendonaris, E. Erkip, and B. Aazhang, “Increasing uplink capacity via user cooperation diversity,” in Information Theory, 1998. Proceedings. 1998 IEEE International Symposium on, p. 156, Aug. 1998.
    [13] G. Farhadi and N. C. Beaulieu, “Selective decode-and-forward relaying scheme for multi-hop diversity transmission systems,” in Proc. of IEEE GLOBECOM, pp. 4385–4390, 2007. [14] J. M. Shea, T. F. Wong, and Wing-HinWong, “Cooperative-diversity slotted ALOHA,” ACM Wireless Networks, pp. 361–369, June 2007.
    [15] “The Network Simulator - ns-2.” http://www.isi.edu/nsnam/ns/.
    [16] M. Zorzi, R. R. Rao, and L. B. Milstein, “On the accuracy of a first-order Markov Model for data transmission on fading channels,” in Proc. of IEEE International Conference on Universal Personal Communications (ICUPC), pp. 211–215, Nov. 1995.
    [17] L. Erwu, W. Dongyao, L. Jimin, S. Gang, and J. Shan, “Performance evaluation of bandwidth allocation in 802.16j mobile multi-hop relay networks,” in Proc. of IEEE Vehicular Technology Conference, pp. 939–943, 2007-Spring.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE