簡易檢索 / 詳目顯示

研究生: 鄭憶湘
Yi-Hsiang Cheng
論文名稱: 以遺傳演算法進行熱電式能源系統之最佳化設計
Optimization Study of Thermoelectric Energy System through Genetic Algorithms
指導教授: 施純寬
Chunkuan Shih
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 179
中文關鍵詞: 熱電式能源系統遺傳演算法最佳化設計運算流程
外文關鍵詞: Thermoelectric energy system, Genetic algorithms, Optimization, Design flowchart
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出了以遺傳演算法進行熱電式能源系統之新穎式最佳化設計方法。當考慮熱電式的致冷系統時,參數最佳化後的目的是要將該系統的致冷能力或是冷凍性能係數(COP)提到最大,因此在本文的研究中考慮了兩種熱電致冷系統結構—單層式以及雙層式的熱電元件—分別對其參數進行最佳化設計。單層式的熱電致冷系統考慮的參數包括接腳長度、接腳截面積、接腳個數;而對於雙層式的熱電致冷系統,考慮的參數包括供給予上、下兩層元件的電流、接腳長度、接腳截面積、接腳個數,同時雙層式的熱電致冷系統又考慮三種不同的電源配接形式—電源串聯、電源並聯、以及電源個別供給。本研究同時提出新的數學模型,用以處理熱電系統中材料參數隨溫度變化的現象,以及處理在雙層結構中,上層與下層間的接觸熱阻與擴散熱阻的計算;且提出運算流程,用以將熱電式能源系統之數學理論模型與遺傳演算法結合運算;不論是單層式或是雙層式的熱電元件,均能引入限制條件進入最佳化過程中,例如製程限制、材料體積之限制。本文所提出的演算法計算模式,不僅可以處理複雜的數學模型運算、進行更趨近於工程目標的設計,而在參數最佳化後的結果顯示,熱電式致冷系統的致冷能力或是冷凍性能係數表現,均優於以傳統方式進行最佳化設計之結果。


    This work presented a novel method based on genetic algorithms (GAs) to optimize thermoelectric energy systems. The objective of the optimization is on maximizing the cooling capacity or maximizing the coefficient of performance (COP) of thermoelectric cooling (TEC) systems. Two kinds of arrangements, including single- and two-stage TEC systems, have been studied. While optimizing a single-stage TEC system, structural parameters – including the thermocouple length, the thermocouple cross-section area and the number of thermocouple – were taken as the variables. While optimizing a two-stage TEC system, parameters – including the applied electrical current, the thermocouple length, the thermocouple cross-section area and the number of thermocouples – were considered. Two-stage TEC systems can be further categorized into three types, which are with two stages electrically connected in parallel, in series and in separate. A new mathematical modelling was also proposed to deal with the temperature-dependent material properties and to include the effects of contact and spreading thermal resistances between the two stages. For both single- and two-stage TEC systems, this study developed the design flowchart and programs that combine the mathematical modelling with GAs’ technique. All kinds of design constraints–space constraints and all others–can be considered and modeled during the optimization. The results indicate that the cooling capacity or COP can be increased by optimizing the parameters of TEC systems. This study also demonstrates that the new approach based on GAs can be used effectively to optimize the thermoelectric energy systems, and this method exhibits highly potential in handling complex design problems.

    摘要....................................................iii ABSTRACT................................................iv TABLE OF CONTENTS.......................................vi LIST OF TABLES..........................................viii LIST OF FIGURES.........................................ix NOMENCLATURE............................................xi CHAPTER 1 INTRODUCTION...................................1 CHAPTER 2 LITERATURE REVIEW..............................9 2.1 Thermoelectric phenomena...........................9 2.2 Introduction to thermoelectric cooling systems.....14 2.3 Investigation and optimization on TEC systems......17 2.4 Applications of GAs to heat/fluid flow engineering.19 CHAPTER 3 THEORIES IN THERMOELECTRIC COOLING SYSTEMS.....29 3.1 Theoretical developments...........................29 3.2 Model of single-stage TEC systems..................32 3.3 Simplified model of two-stage TEC systems..........33 3.4 Detail model of two-stage TEC systems..............37 CHAPTER 4 OPTIMIZATION ALGORITHMS........................47 4.1 Introduction.......................................47 4.2 Constrained Optimization and Unconstrained Optimization.......................................50 4.3 Genetic algorithms.................................52 4.3.1 Foundations of Genetic Algorithms............52 4.3.2 Encoding.....................................55 4.3.3 Population size..............................57 4.3.4 Genetic operators............................58 4.3.5 Selection....................................60 4.3.6 Adaptive parameterizations...................61 4.4 Hybrid genetic algorithms..........................62 4.5 Niching genetic algorithms.........................64 CHAPTER 5 OPTIMIZATION OF THERMOELECTRIC COOLING SYSTEMS........................................90 5.1 Optimization of single-stage TEC systems under space constraint.........................................90 5.1.1 Optimization algorithms and process..........91 5.1.2 Test for genetic search......................97 5.1.3 Optimization results.........................98 5.2 Optimization of simplified model of two-stage TEC systems............................................101 5.2.1 Optimization algorithms and process..........102 5.2.2 Test for genetic search......................105 5.2.3 Optimization results.........................107 5.3 Optimization of simplified model of two-stage TEC systems under space constraint.....................109 5.3.1 Optimization algorithms and process..........110 5.3.2 Test for genetic search......................114 5.3.3 Optimization results.........................115 5.4 Optimization of detail model of two-stage TEC systems............................................117 5.4.1 Optimization algorithms and process..........117 5.4.2 Test for genetic search......................120 5.4.3 Optimization results.........................122 CHAPTER 6 CONCLUSIONS AND FUTURE WORKS...................172 6.1 Conclusions........................................172 6.2 Future works.......................................173 REFERENCES...............................................175

    [1] From http://www.melcor.com/
    [2] D.M. Rowe, CRC Handbook of Thermoelectric, CRC Press, London, 1996.
    [3] M. Yamanashi, Y. Kibayashi, F. Toyada, and M. Azechi, Optimization Design in Thermoelectric Cooling Systems, in: 15th International Conference on Thermo- electrics, 1996, pp. 220-222.
    [4] M. Yamanashi, A New Approach to Optimum Design in Thermoelectric Cooling System, Journal of Applied Physics, 1996, pp. 5494-5502.
    [5] J. Chen, Comment on “A New Approach to Optimum Design in Thermoelectric Cooling System”, Journal of Applied Physics, 1996, pp. 6368-6369.
    [6] From: http://www.sctbnord.com/ choosing.html
    [7] J. Chen, Y. Zhou, H. Wang, and J.T. Wang, Comparison of the Optimal Performance of Single- and Two-stage Thermoelectric Refrigeration Systems, Applied Energy, Vol. 73, 2002, pp. 285-298.
    [8] R. Yang, G. Chen, A. R. Kumar, G. J. Snyder, and J.P. Fleurial, Transient Cooling of Thermoelectric Coolers and Its Applications for Microdevices, Energy Conversion and Management, Vol. 46, 2005, pp. 1407-1421.
    [9] K.W. Lindler, Use of Multi-stage Cascades to Improve Performance of Thermoelectric Heat Pumps, Energy Conversion and Management, Vol. 39, No. 10, 1998, pp. 1009-1014.
    [10] X.C. Xuan, K.C. Ng, C. Yap, and H.T.Chua, Optimization of Two-stage Thermoelectric Coolers with Two Design Configurations, Energy Conversion and Management, Vol. 43, 2002, pp. 2041-2052.
    [11] H. Lai, Y. Pan, and J. Chen, Optimum Design on the Performance Parameters of a Two-stage Combined Semiconductor Thermoelectric Heat Pump, Semiconductor Science and Technology, Vol. 19, 2004, pp. 17-22.
    [12] From http://www.huimao.com/
    [13] L. Rushing, A. Shakouri, P. Abraham and J.E. Bowers, Micro Thermoelectric Coolers for Integrated Applications, in: 16th International Conference on Thermoelectrics, 1997, pp. 646-649.
    [14] U. Ghoshal, Y.S. Ju, A. Miner, and M.B. Ketchen, Advanced Electronic Microcooler, in: 18th International Conference on Thermoelectrics, 1999, pp. 113-116.
    [15] V. Semenyuk, Cascade Thermoelectric Micro Modules for Spot Cooling high Power Electronic Components, in: 21st International Conference on Thermo- electrics, 2002, pp. 531-534.
    [16] Xuan, X.C., Ng, K.C., Yap, C., and Chua, H.T., The Maximum Temperature Difference and Polar Characteristic of Two-Stage Thermoelectric Coolers, Cryogenics, Vol. 42, 2002, pp. 273-278.
    [17] X.C. Xuan, Analyses of the Performance and Polar Characteristics of Two-stage Thermoelectric Coolers, Semiconductor Science and Technology, Vol. 17, 2002, pp. 414-420.
    [18] R.J. Buist, and P.G. Lau, Theoretical Analysis of Thermoelectric Cooling Performance Enhancement via Thermal and Electrical Pulsing, in: 15th International Conference on Thermoelectrics, 1996.
    [19] M. Labudovic, and J. Li, Modeling of TE Cooling of Pump Lasers, IEEE Transactions on Components and Packaging Technologies, 2004, pp. 724-730.
    [20] M. Gen, R. Cheng, Genetic Algorithms and Engineering Design, Wiley, New York, 1997.
    [21] From: http://www.chem.cornell.edu
    [22] From: http://www.unavarra.es
    [23] D.M. Rowe, CRC Handbook of Thermoelectric, CRC Press, London, 1996.
    [24] X.C. Xuan, Investigation of Thermal Contact Effect on Thermoelectric Cooler, Energy Conservation and Management, Vol. 44, 2003, pp. 399-410.
    [25] Y. Bi, L. Chen, C. Wu, S. Wang, Effect of Heat Transfer on the Performance of Thermoelectric Heat Pumps, Journal of Non-equilibrium Thermodynamics, Vol. 26, 2001, pp. 41-45.
    [26] X. Wei, and Y. Joshi, Optimization Study of Stacked Micro-channel Heat Sinks for Micro-electronic Cooling, IEEE Transactions on Components and Packaging Technologies, Vol. 26, No. 1, 2003, pp. 55-61.
    [27] J.L. Francois, and H.A. Lopez, SOPRAG: a System for Boiling Water Reactors Reload Pattern Optimization using Genetic Algorithms, Annals of Nuclear Energy, Vol. 26, 1999, pp. 1053-1063.
    [28] Y. K. Kwon, B. R. Moon, and S.D. Hong, Critical Heat Flux Function Approxi- mation using Genetic Algorithms, IEEE Transactions on Nuclear Science, Vol. 52, No. 2, 2005, pp. 535-545.
    [29] S.A. Grady, M.Y. Hussaini, and M.M. Abdullah, Placement of Wind Turbines using Genetic Algorithms, Renewable Energy, Vol. 30, 2005, pp. 259-270.
    [30] X. Qin, L. Chen, F. Sun, and C. Wu, Optimization for a Steam Turbine Stage Efficiency using a Genetic Algorithm, Applied Thermal Engineering, Vol. 23, 2003, pp. 2307-2316.
    [31] V.V.R. Silva, W. Khatib, and P.J. Fleming, Performance Optimization of Gas Turbine Engine, Engineering Applications of Artificial Intelligence, Vol. 18, 2005, pp. 575-583.
    [32] I. Mohamed, and N. Jenkins, Proton Exchange membrane (PEM) Fuel Cell Stack Configuration using Genetic Algorithms, Journal of Power Sources, Vol. 131, 2004, pp. 142-146.
    [33] From http://www.melcor.com, homepage of MELCOR, USA.
    [34] S. Lee, S. Song, V. Au, and K.P. Moran, Constriction / Spreading Resistance Model for Electronic Packaging, Proceeding of ASME/JSME Engineering Conference, Vol. 4, 1995.
    [35] J. Holland, Genetic Algorithms and the Optimal Allocations of Trail, SIAM Journal of Computing, Vol. 2, No. 2, 1973, pp. 88-105.
    [36] H. Schwefel, Evolution and Optimum Seeking, Wiley, New York, 1995.
    [37] D.B. Fogel, Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, IEEE Press, Piscataway, NJ, 1995.
    [38] J.R. Koza, Genetic Programming, MIT Press, Cambridge, 1997.
    [39] Z. Michalewicz, Genetic Algorithm + Data Structure = Evolution Programs, 3rd Edition, Springer-Verlag, New York, 1996.
    [40] D.E Golberg, Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA: Addison, Wesely, 1989.
    [41] D.E. Goldberg, Optimal Initial Population Size for Binary-Coded Genetic Algorithms, TCGA Report No.85001.
    [42] D.E. Goldberg, Sizing Population for Serial and Parallel Genetic Algorithms, Proceeding of the Third International Conference on Genetic Algorithms, pp. 70-79, 1989.
    [43] J. T. Alander, On Optimal Population Size of Genetic Algorithms, Proceeding of CompEuro, pp.65-70, 1992.
    [44] K. DeJong, An Analysis of the Behavior of a Class of Genetic Adaptive Systems, PhD Dissertation, University of Michigan, 1975.
    [45] J. J. Grefenstette, Optimization of Control Parameters for Genetic Algorithms, IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-16, No. 1, January/Febuary, 1986.
    [46] A.E. Eiben, and M. Schoenauer, Evolutionary Computing, Information Processing Letters, Vol. 82, pp.1-6, 2002.
    [47] H. Zhang, and M. Ishikawa, An Extended Hybrid Genetic Algorithm for Exploring a Large Search Space, Proc. 2nd International Conference on Autonomous Robots and Agents, Palmerston North, New Zealand, pp. 13-15, 2004
    [48] G. K. Mahinthakumar, M. ASCE, and M. Sayeed, Hybrid Genetic Algorithm–Local Search Methods for Solving Groundwater Source Identification Inverse Problems, Journal of Water Resources Planning and Management, Vol. 131, pp. 45-57, January/February, 2005.
    [49] P. V. Hentenryck, and L. Michel, Constraint-Based Local Search, ACM Press, New York, NY, USA, 2002.
    [50] H.H. Hoos and T. Stützle, Stochastic Local Search: Foundations and Applications, Elsevier / Morgan Kaufmann, San Francisco, CA, 2004.
    [51] J.K. Kim, D.H. Cho, H.K Jung, and C.G. Lee, Niching Genetic Algorithm Adopting Restricted Competition Selection Combined with Pattern Search Method, IEEE Transactions on Magnetics, Vol. 38, pp. 1001-1004, 2002
    [52] M. Momma, and K.P. Bennett, A Pattern Search Method for Model Selection of Support Vector Regression, Proc. 2nd SIAM International Conference of Data Mining, Arlington, 2002.
    [53] C.G. Lee, D.H. Cho, and H.K. Jung, Niching Genetic Algorithm with Restricted Competition Selection for Multimodal Function Optimization, IEEE Transactions on Magnetic, Vol. 34, pp. 1722-1755, 1999.
    [54] J.K. Kim, D.H. Cho, H.K. Jung, and C.G. Lee, Niching Genetic Algorithm Adopting Restricted Competition Selection Combined with Pattern Search Method, IEEE Transactions on Magnetic, Vol. 38, No. 2, 2002.
    [55] D.H. Cho, J.K. Kim, H.K. Jung, C.G. Lee, Optimal Design of Permanent-Magnet Motor using Autotuning Niching Genetic Algorithm, IEEE Transactions on Magnetic, Vol. 39, No. 3, 2003.
    [56] S.W. Mahfoud, Niching Methods for Genetic Algorithms, PhD thesis, University of Illinois, 1995.
    [57] Yi-Hsiang Cheng et. al, “Geometric Optimization of Thermoelectric Coolers in a Confined Volume using Genetic Algorithms,” Applied Thermal Engineering, Vol. 25, pp. 2983-2997, 2005.
    [58] R. Chein, and G. Huang, Thermoelectric Cooler Application in Electronic Cooling, Applied Thermal Engineering, Vol. 24, pp. 2207-2217, 2004.
    [59] T. Wartanowicz and A. Czarnecki, Optimization of a Multistage Thermoelectric Cooling System Concerning Maximum COP, in: 15th International Conference on Thermoelectrics, pp. 307-310, 1996.
    [60] Yi-Hsiang Cheng and Chunkuan Shih, “Optimizing the Arrangement of Two-Stage Thermoelectric Coolers through a Genetic Algorithm,” JSME International Journal: Series B: Fluids and Thermal Engineering, Vol. 49, No. 3, pp. 831-838, 2006.
    [61]鄭憶湘、施純寬, 雙層式熱電元件之參數最佳化設計,第二十二屆中國機械工程學會學術研討會,台灣中壢,十一月,2005.
    [62] Yi-Hsiang Cheng and Chunkuan Shih, “Maximizing the Cooling Capacity and COP of Two-Stage Thermoelectric Coolers through Genetic Algorithm,” Applied Thermal Engineering, Vol. 26, pp. 937-347, 2005.
    [63] Yi-Hsiang Cheng and Chunkuan Shih, “Application of Genetic Algorithm to Maximizing the Cooling Capacity in a Thermoelectric Cooling System,” IEEE International Conference on Industrial Technology, Hong Kong, Dec. 14-17, 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE