研究生: |
許祚榮 Hsu, Tso-Jung |
---|---|
論文名稱: |
探討程式編寫融入STEM課程對國小學生在STEM學習態度、運算思維能力、程式編寫能力的影響 The effects of integrating coding into STEM courses on elementary school students’ attitudes towards STEM, computational thinking abilities, and coding skills |
指導教授: |
王姿陵
Wang, Tzu-Ling |
口試委員: |
蔡俊彥
Tsai, Chun-Yen 周金城 Chou, Chin-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
竹師教育學院 - 數理教育研究所碩士在職專班 Mathematics & Science Education Master Inservice Program |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | STEM學習態度 、程式編寫融入STEM課程 、程式編寫能力 、運算思維能力 |
外文關鍵詞: | attitudes towards STEM, integration of coding into STEM courses, coding skills, computational thinking abilities |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的在探討以程式編寫融入STEM課程對國小學生在STEM領域的學習態度、運算思維能力及程式編寫能力的影響。本研究的樣本來自新竹市兩所公立國小4-6年級學生共31名,以個案研究法採混合研究分析,透過STEM營隊的方式,以motoBlockly進行程式編寫融入STEM課程,共有「Arduino電子琴」、「Arduino感應式酒精瓶」兩個STEM課程模組,每個課程模組約9小時,共十八小時。並在課程前後實施「國小學生STEM態度量表」、「Bebras國際運算思維測驗」、「程式編寫能力測驗」來了解學生的學習成效。此外,使用「課程回饋半結構問卷」了解學生對於「STEM態度」及「程式編寫能力」的想法。研究結果顯示程式編寫融入STEM課程對於國小學生的STEM學習態度有顯著提升,進一步發現學生覺得這種跨領域的課程非常有趣,並且對於「工程」及「科技」這兩方面是最有收穫的。對於運算思維能力也有顯著提升,也就是在運算思維的核心能力「問題分解」、「模式辨識」、「抽象化」、「演算法設計」等方面表現的更好。對於程式編寫能力也有顯著提升,並進一步發現學生對於利用學到的程式編寫能力來設計科技產品也有自己的想法。本研究的啟示為將程式編寫融入STEM課程後,這種將「工程」及「科技」跨領域的合作可以明顯幫助學生將這兩個領域都學得更好,也對於這種跨領域的學習更有興趣。
The purpose of this study was to investigate the effects of integrating coding into STEM courses on elementary school students' attitudes towards STEM, computational thinking abilities, and coding skills. The study sample consisted of 31 students from grades 4 to 6, selected from two public elementary schools in Hsinchu City, Taiwan. The research employed a mixed-methods approach, utilizing a case study design. The intervention was conducted through STEM camps, where the motoBlockly platform was used to integrate coding into the courses. Two STEM modules, namely "Arduino Electronic Piano" and "Arduino Alcohol Sensor Bottle," were implemented, with each module consisting of approximately 9 hours of instruction, totaling 18 hours. Pre- and post-assessments were administered using the "Elementary School Students' STEM Attitude Scale," the "Bebras International Computational Thinking Test," and a "Coding Skills Test" to evaluate students' learning outcomes. Additionally, a "Course Feedback Semi-Structured Questionnaire" was employed to gather students' perspectives on STEM attitudes and coding skills. The results indicated a significant improvement in students' attitudes towards STEM as a result of integrating coding into the courses. Furthermore, students found this interdisciplinary approach highly engaging and reported the most significant gains in the areas of "engineering" and "technology." There was also a significant enhancement in computational thinking abilities, particularly in problem decomposition, pattern recognition, abstraction, and algorithm design. Significant improvement in coding skills was observed, and students expressed their own ideas regarding utilizing the acquired coding skills to design technological products. The findings suggest that integrating coding into STEM courses significantly helps elementary school students improve their learning outcomes in both engineering and technology domains, and also increases their interest in interdisciplinary learning.
一、中文文獻
中國教育科學研究院(2017)。《中小學STEM教育發展報告(2017)》。北京:人民教育出版社。
李仲瑜(2013)。數學科試題分析之研究-以 100 學年度四技二專商業類聯合模擬考為例〔未出版之碩士論文〕。國立臺中教育大學數學教育學系。
呂郁欣(2017)。引導策略與學習順序對國小機器人程式設計學習成效及態度之影響〔未出版之碩士論文〕。國立臺灣師範大學資訊教育研究所。
呂沂蓁(2020)。以小組合作學習進行 Scratch 程式設計對國中生運算思維的影響〔未出版之碩士論文〕。 國立台中教育大學數位內容科技學系碩士班。
林坤誼(2018)。STEM 教育在台灣推行的現況與省思。青年研究學報。
林玉織(2022)。以遊戲式程式設計教學提升國小學生程式學習動機與運算思維能力〔未出版之碩士論文〕。國立陽明交通大學理學院科技與數位學習學程。
施怡如(2014)。Scratch 程式設計對國中七年級學生數學能力及問題解決態度之影響〔未出版之碩士論文〕。 臺北市立大學資訊科學碩士學位在職進修專班。
柳姿瑄(2021)。結合 STEM 模組教育對國小五年級學生有關性別差異在自然與生活科技課程「水溶液」單元中學習成效、學習興趣、學習技能之影響-以製作彩色拉麵為例〔未出版之碩士論文〕。 國立屏東大學應用化學系碩士班。
郭家良(2014)。STEM 課程統整模式運用於國中生活科技教學對學生學習成效影響之行動研究〔未出版之碩士論文〕。國立臺灣師範大學科技應用與人力資源發展學系。
陳沛均(2019)。國中小學生運算思維與程式設計能力之研究〔未出版之碩士論文〕。國立臺灣師範大學資訊工程研究所。
徐雅雯(2019,8月)。國際運算思維能力測驗題庫。雅雯老師的電腦教室。https://bit.ly/464v3Rk
陳錦松(2021)。探討長期實施STEM-PjBL對偏鄉國中之影響〔未出版之碩士論文〕。國立東華大學教育與潛能開發學系科學教育博士班。
張玉山、楊雅茹(2014)。STEM 教學設計之探討:以液壓手臂單元為例。科技與人力教育季刊,1(1),2-17。國立臺灣師範大學科技應用與人力資源發展學系。
國家教育研究院(2015)。《STEM教育政策白皮書:以臺灣為例》。新北市:國家教育研究院。
教育部(2018)。高等教育深耕計畫。教育部官網。
http://bit.ly/3p26Z0Z。
康致禎(2021)。編碼融入 STEM課程對國小學生學習成效之影響〔未出版之碩士論文〕。國立屏東大學科普傳播學系數理教育碩士班。
許富量(2022)。互動情境機器人教學在程式設計之學習應用與評估〔未出版之碩士論文〕。國立臺中教育大學數位內容科技學系碩士在職專班。
葉柏維(2017)。STEAM 理論融入國小科技實作的活動設計:橡皮筋動力車向 前衝。科技與人力教育季刊,4(1),63-75。國立臺灣師範大學科技應用與人力資源發展學系。
Craig Richardson(2016)。Python輕鬆學:遊戲設計初體驗(顧思捷,譯)。博碩。(原著出版於 2015 年)
Jason Chu(2020年9月1日)。《Arduino入門》第一篇:認識Arduino。https:// bit.ly/3J7opjK
二、外文文獻
ACARA. (2013). Australian Curriculum: Technologies. Retrieved from https://www.australiancurriculum.edu.au/f-10-curriculum/technologies/
Arslan, K., & Tanel, Z. (2020). Analyzing the effects of Arduino applications on students’ opinions, attitude and self-efficacy in programming class. Education and Information Technologies, 26(1), 1143-1163. https://doi.org/10.1007/s10639-020-10290-5
Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. AERA Annual Meeting Proceedings, 1, 1-25. https://doi.org/10.3102/0162373712345677
Bundesministerium für Bildung und Forschung. (2012). MINT-Zukunft schaffen: Erfolgreiche Praxisstrategien zur Gewinnung von Nachwuchs für die MINT-Berufe. Berlin: Bundesministerium für Bildung und Forschung.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Routledge.
Cooper, A. (1992). A visual language for interaction design. ACM Transactions on Computer-Human Interaction (TOCHI), 1(2), 63-89.
CSTA. (2011). CSTA K-12 Computer Science Standards. Retrieved from https://www.csteachers.org/page/K12csstandards
Chien, Y.-H., Chang, Y.-S., Hsiao, H.-S., & Lin, K.-Y. (2017). STEAM-oriented Robot Insect Design Curriculum for K-12 Students. In 2017 7th World Engineering Education Forum (WEEF) (pp. 1-4). Kuala Lumpur, Malaysia.
doi: 10.1109/WEEF.2017.8466970.
Chen, Y. T., Chen, M. H., & Sung, Y. T. (2019). The effects of STEM project-based learning on students' computational thinking and self-efficacy in learning computer science. Journal of Educational Computing Research, 57(1), 38-59.
Chung, C.-C., & Lou, S.-J. (2021). Physical Computing Strategy to Support Students’ Coding Literacy: An Educational Experiment with Arduino Boards. Applied Sciences, 11(4). doi:10.3390/app11041830
DfE. (2014). Computing Programmes of Study: Key Stages 1 and 2. Retrieved from https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/239033/PRIMARY_national_curriculum_-_Computing.pdf
Friday Institute for Educational Innovation (2012). Student Attitudestoward STEM
Survey-Upper Elementary School Students, Raleigh, NC: Author.
Grover, Shuchi, Pea, & Roy. (2013). Computational Thinking in K–12 A Review of the State of the Field. Educational Researcher, 42(1), 38-43. doi:10.3102/0013189x12463051
Horn, M. S., Crouser, R. J., & Bers, M. U. (2012). Programming in a robotics context in the kindergarten classroom: The impact on sequencing skills. Journal of Educational Computing Research, 46(4), 369-387.
Hockey, J. B. (2015). 2015 Intergenerational Report Australia in 2055. CanPrint Communications Pty Ltd
Hsu, Y. S., Wu, H. K., Hwang, F. K., & Lin, S. S. (2016). Effects of a STEM-oriented curriculum on students' achievement: A four-year longitudinal study. International Journal of Science Education, 38(7), 1131-1145.
Hsiao, H. S., Hong, J. C., Chen, P. H., Lu, C. C., & Chen, S. Y. (2017). A five-stage prediction-observation-explanation inquiry-based learning model to improve students’ learning performance in science courses. Eurasia Journal of Mathematics, Science and Technology Education, 13(7), 3393-3416.
He, X., Li, T., Turel, O., Kuang, Y., Zhao, H., & He, Q. (2021). The Impact of STEM Education on Mathematical Development in Children Aged 5-6 Years. International Journal of Educational Research, 109. doi:10.1016/j.ijer.2021.101795
Jayaratne, T. E., Thomas, N. G., & Trautmann, M. (2003). Intervention program to keep girls in the science pipeline: Outcome differences by ethnic status. Journal of Research in Science Teaching, 40(4), 393-414. doi:10.1002/tea.10082
Kao, E. Y., & Wang, L. (2011). Computational Thinking for K-12: A Review of the State of the Field. Educational Researcher, 40(4), 1–20. doi:10.3102/0013189X11405033
Korkmaz, Ö., & Çakir, R. (2017). Investigating the effects of programming education on problem solving skills and logical-mathematical thinking. Journal of Educational Computing Research, 55(5), 615-638.
Lantz, E. (2009). STEM education and the American workforce: A mismatch in the making. Monthly Labor Review, 132(2), 3-11.
Lin, C.-L., & Tsai, C.-Y. (2020). The Effect of a Pedagogical STEAM Model on Students’ Project Competence and Learning Motivation. Journal of Science Education and Technology, 30(1), 112-124. doi:10.1007/s10956-020-09885-x
McGill, T. J., & Volet, S. E. (1997). A Conceptual Framework for Analyzing Students’ Knowledge of Programming. Journal of Research on Computing in Education, 29(3) , 297-312. doi: 10.1080/08886504.1997.10782199
Mann, A., & Oldknow, A. (2012). School - industry STEM links in the UK: A report commissioned by Futurelab. Accessed at https://www.educationandemployers.org/wpcontent/uploads/2012/03/future_lab_- _school-industry_stem_links_in_the_uk.pdf
Miller & Ranum.(2013). Problem Solving with Algorithms and Data Structures using Python. https://runestone.academy/ns/books/published/pythonds/index.html
Obama, B. (2016). STEM for All. Retrieved from https://obamawhitehouse.archives.gov/blog/2016/02/11/stem-all
Psycharis & Sarantos. (2013). Examining the effect of the computational models on learning performance, scientific reasoning, epistemic beliefs and argumentation: An implication for the STEM agenda. Computers & Education, 68, 253-265. doi:10.1016/j.compedu.2013.05.015
Potvin, P., & Hasni, A. (2014). Interest, motivation and attitude towards science and technology at K-12 levels: A systematic review of 12 years of educational research. Studies in Science Education, 50(1), 85-129.
Ross, R., Stanger, J., & Console, A. (2017). Phototropic BristleBot activity for robotics and STEM engagement. In 2017 IEEE International Conference on Mechatronics (ICM) (pp. 425-430). Churchill, VIC, Australia. doi: 10.1109/ICMECH.2017.7921144.
Rong, H., Cui, X., & Wei, X. (2020). The Effect of STEAM Learning Intervention on Students’ Learning Attitude and Creativity: A Case Study of Chinese High School Students. Frontiers in Psychology, 12, 716764.
Srisangngam, P., & Dechsura, C. (2020). STEM Education Activities Development to Promote Computational Thinking's Students. In 2020 5th International STEM Education Conference (iSTEM-Ed) (pp. 103-105). Hua Hin, Thailand. doi: 10.1109/iSTEM-Ed50324.2020.9332734.
TKI. (2017). Computational thinking. Retrieved from https://nzcurriculum.tki.org.nz/Technology/Computational-thinking
U.S. Department of Education. (2013). STEM 2026: A Vision for Innovation in STEM Education. Retrieved from https://www.ed.gov/stem2026
Vela, K. N., Bicer, A., Capraro, R. M., Barroso, L. R., & Caldwell, C. (2018). What Matters to My Future: STEM Int-her-est and Expectations. In 2018 IEEE Frontiers in Education Conference (FIE) (pp. 1-7). San Jose, CA, USA. doi: 10.1109/FIE.2018.8658488.
Wing, & M., J. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. doi:10.1145/1118178.1118215
Webb, M., Bell, T., Davis, N., Katz, Y., Reynolds, N., Chambers, D. P., & Syslo, M. M. (2017). Computer Science in the School Curriculum: Issues and Challenges. In A. Tatnall & M. Webb (Eds.), Tomorrow's Learning: Involving Everyone. Learning with and about Technologies and Computing. WCCE 2017. IFIP Advances in Information and Communication Technology, Vol. 515 (pp. 504-515). Springer, Cham. doi:10.1007/978-3-319-74310-3_43
Yakman, G. (2008). STEAM Education: An overview of creating a model of integrative education. ResearchGate. Retrieved from https://www.researchgate.net/publication/327351326. Accessed on July 5, 2021.