簡易檢索 / 詳目顯示

研究生: 葉瑞鴻
Jui-Hung Yeh
論文名稱: 下一代全IP無線網路之行動管理與電能效益
Mobility Management and Energy Efficiency for Next-Generation All-IP Wireless Networks
指導教授: 陳志成
Jyh-Cheng Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 118
中文關鍵詞: 行動管理電能效益全IP無線網路效能分析
外文關鍵詞: Mobility Management, Energy Efficiency, All-IP Wireless Networks, Performance Analysis
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 下一代無線網路已經被認為是一個整合網際網路以及各種通訊網路的全IP網路,本篇論文主要探討在下一代無線網路中的「行動管理」與「電能效益」兩項重要議題。
    首先,我們深入研究了各種行動管理協定,並且提出了一套「可重設定架構暨行動管理平台」(Reconfigurable Architecture and Mobility Platform, RAMP),在此平台中,使用者與網路端能透過協議動態執行各自所需要的行動管理協定,而我們從數學分析、網路模擬以及實驗平台數據都驗證了此平台的可行性以及各種效能。此外,電能效益一直是無線網路中的一項重要議題,尤其下一代無線網路的高速資料傳輸更會快速消耗行動裝置的電能,在論文中我們研究並量化比較了3GPP與3GPP2的節能機制,而我們提出的分析模型更可以提供一個可行的方法作為節能機制中參數調校的依據。
    WiMAX被認為是下一代無線網路重要標準技術之一,經由我們在行動管理與電能效益中的研究,我們在WiMAX行動環境中提出一套「快速內部網路跨層換手協定」(Fast Intra-Network and Cross-layer Handover, FINCH)來支援快速且有效率的換手機制,同時,此協定也支援休眠機制以達到節電的目的。數學分析與網路模擬驗證了提出的協定可以有效減低Mobile IP換手以及傳輸兩端的延遲,因此特別適用於高速移動下存取即時性資料的情境,而這也正是WiMAX在下一代無線網路中的重要應用。此外,提出的FINCH協定也能適用於其他一般性的無線系統,因此可以有效應用在下一代整合性的無線網路。


    Next generation wireless networks are expected to be all-IP networks which integrate Internet and the diverse cellular networks. In this thesis, we focus on the two critical issues in next-generation all-IP wireless networks: mobility management and energy-efficiency.
    As the first step, we study the mobility management protocols and propose Reconfigurable Architecture and Mobility Platform (RAMP). The proposed RAMP allows both mobile users and network operators to negotiate and execute their desirable protocols dynamically. Results from the analytic models, network simulations, and testbed experiments then verify the performance of RAMP. Moreover, energy efficiency is also crucial to wireless networks, especially for the high-speed data transmissions in next-generation wireless systems. We evaluate and quantify the energy conservation mechanisms in 3GPP and 3GPP2. The proposed analytic models then provide a practical method to configure the proper timer lengths.
    WiMAX is one of the promising standards for the next-generation wireless access networks. Based on the study of energy efficiency and mobility management, we propose the Fast Intra-Network and Cross-layer Handover (FINCH) protocol to support fast and efficient handover in the mobile WiMAX. Paging extension for FINCH also enhances the energy efficiency of the mobile WiMAX devices. Analytic and simulation results demonstrate that FINCH can reduce not only the handover latency but also the end-to-end latency for MIP. FINCH is designed for real-time services in frequent handover environment, which is important for future mobile WiMAX networks. In addition, FINCH is a generic protocol that is especially beneficial for the integration of the heterogeneous networks in next-generation wireless networks.

    Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1. Mobility Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2. Energy Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3. Mobility Management in WiMAX . . . . . . . . . . . . . . . . . . . . . . 6 1.4. Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2. RAMP: Reconfigurable Architecture and Mobility Platform . . . . . . . . . 10 2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1. Reconfigurable Networks for Mobility Management . . . . . . . . 12 2.2.2. Reconfigurable Networks for Mobility Management . . . . . . . . 14 2.3. System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1. Network Node (NN) Architecture . . . . . . . . . . . . . . . . . . 17 2.3.2. Mobile Node (MN) Architecture . . . . . . . . . . . . . . . . . . . 19 2.3.3. Realization in IP Networks . . . . . . . . . . . . . . . . . . . . . . 20 2.3.4. Processing Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.5. Characteristics of RAMP . . . . . . . . . . . . . . . . . . . . . . . 24 2.4. Analysis of Signaling Cost in RAMP . . . . . . . . . . . . . . . . . . . . . 24 2.5. Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.6. Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3. Comparative Analysis of Energy Saving Techniques in 3GPP and 3GPP2 Sys- tems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2. Energy Conservation in 3GPP . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.1. Channel Structure of WCDMA . . . . . . . . . . . . . . . . . . . 37 3.2.2. SM (Session Management) State Machine . . . . . . . . . . . . . . 38 3.2.3. Packet Mobility Management (PMM) State Machine . . . . . . . . 39 3.2.4. RRC (Radio Resource Control) State Machine . . . . . . . . . . . 40 3.2.5. State Machines and Energy Conservation . . . . . . . . . . . . . . 45 3.3. Energy Conservation in 3GPP2 . . . . . . . . . . . . . . . . . . . . . . . . 46 3.3.1. Channel Structure of cdma2000 . . . . . . . . . . . . . . . . . . . 48 3.3.2. PDS (Packet Data Session) State Machine . . . . . . . . . . . . . . 48 3.3.3. PDSCC (Packet Data Service Call Control) State Machine . . . . . 51 3.3.4. MSL3P (MS Layer 3 Processing) State Machine . . . . . . . . . . 53 3.3.5. State Machines and Energy Conservation . . . . . . . . . . . . . . 55 3.4. Qualitative Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.5. Quantitative Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.5.1. Traffic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.5.2. Analytic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.5.3. System Parameters Varied . . . . . . . . . . . . . . . . . . . . . . 70 3.6. Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.7. Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4. Fast Intra-Network and Cross-layer Handover (FINCH) for WiMAX and Mo- bile Internet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.1. Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.2. Proposed FINCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.2.1. Packet Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.2.2. Reducing ARP Messages . . . . . . . . . . . . . . . . . . . . . . . 83 4.2.3. Handover and Location Update . . . . . . . . . . . . . . . . . . . 83 4.2.4. Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.2.5. Paging Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.3. Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.3.1. Analysis of Location Update Cost . . . . . . . . . . . . . . . . . . 90 4.3.2. Analysis of Overall Mobility Cost . . . . . . . . . . . . . . . . . . 97 4.3.3. Analysis of Energy Conservation . . . . . . . . . . . . . . . . . . 100 4.4. Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

    [1] J.-H. Yeh, J.-C. Chen, and C.-C. Lee, “WLAN standards,” IEEE Potentials, vol. 22, pp. 16–22, Oct.-Nov. 2003.
    [2] W. H.W. Tuttlebee, “Software-defined radio: facets of a developing technology,” IEEE Personal Commun. Mag., vol. 6, pp. 38–44, Apr. 1999.
    [3] “3rd generation partnership project (3GPP).” http://www.3gpp.org.
    [4] “Gernal packet radio service (GPRS); service description; stage 2.” 3GPP TS 23.060, 2002.
    [5] “3rd generation partnership project 2 (3GPP2).” http://www.3gpp2.org.
    [6] J.-C. Chen and T. Zhang, IP-Based Next-Generation Wireless Networks. Wiley, Jan. 2004. http://www.cs.nthu.edu.tw/~jcchen/book.html.
    [7] “WiMAX forum.” http://www.wimaxforum.org.
    [8] “WiMAX end-to-end network systems architecture (stage 3: detailed protocols and procedures).” WiMAX Forum, NWG stage 3 - release 1 V&V draft, Aug. 2006.
    [9] J.-C. Chen and H.-W. Lin, “A gateway approach to mobility integration of GPRS and wireless LANs,” IEEE Wireless Commun. Mag., vol. 12, pp. 86–95, Apr. 2005.
    [10] J.-C. Chen and W.-M. Chen, “Design and analysis of a mobility gateway for GPRS-WLAN integration,” IEEE Trans. Veh. Technol., Sept. 2007.
    [11] “Gernal packet radio service (GPRS); GPRS tunneling protocol (GTP) across the Gn and Gp Interface.” 3GPP TS 29.060, 2002.
    [12] A. T. Campbell, J. Gomez, S. Kim, Z. R. Tur’ anyi, A. G. Valk’ o, and C.-Y.Wan, “Internet micromobility,” Journal of High Speed Networks, vol. 11, no. 3-4, pp. 177–198, 2002.
    [13] “Air interface for fixed broadband wireless access systems.” IEEE Std 802.16-2004, Oct. 2004.
    [14] “Part 16: air interface for fixed and mobile broadband wireless access systems-amendment 2: physical and medium access control layers for combined fixed and mobile operation in licensed bands.” IEEE Std 802.16e-2005, Feb. 2006.
    [15] “WiMAX Forum.” http://www.wimax.org/.
    [16] “Stage 2: architecture tenets, reference model and reference points. Part 1: network reference model.” WiMAX Forum Network Architecture, Feb. 2007.
    [17] “Stage 2: architecture tenets, reference model and reference points. Part 2.” WiMAX Forum Network Architecture, Feb. 2007.
    [18] E. Gustafsson, A. Jonsson, and C. Perkins, “Mobile IPv4 regional registration.” IETF Internet Draft, <draft-ietf-mip4-reg-tunnel-04>, Oct. 2006.
    [19] A. Campbell, J. Gomez, S. Kim, A. G. Valk’ o, C.-Y. Wang, and Z. R. Tur’ anyi, “Design, implementation and evaluation of cellular IP,” IEEE Personal Commun. Mag., vol. 7, pp. 42–49, Aug. 2000.
    [20] R. Ramjee, K. Varadhan, L. Salgarelli, S. R. Thuel, S.-Y. Wang, and T. L. Porta, “HAWAII: a domain-based approach for supporting mobility in wide-area wireless networks,” IEEE/ACM Trans. Networking, vol. 10, pp. 396–410, June 2002.
    [21] A. T. Campbell, J. Gomez, S. Kim, and C.-Y. Wan, “Comparison of IP micro mobility protocols,” IEEE Wireless Commun. Mag., vol. 9, pp. 2–12, Feb. 2002.
    [22] S. Das, A. McAuley, A. Dutta, A. Misra, K. Chakraborty, and S. K. Das, “IDMP: an intradomain mobility management protocol for next-generation wireless networks,” IEEE Wireless Commun. Mag., vol. 9, pp. 38–45, June 2002.
    [23] S. Das, A.Misra, P. Agrawal, and S. K. Das, “TeleMIP: Telecommunications-enhanced Mobile IP architecture for fast intradomain mobility,” IEEE Personal Commun. Mag., vol. 7, pp. 50–58, Aug. 2000.
    [24] W. Ma and Y. Fang, “Dynamic hierarchical mobility management strategy for mobile IP networks,” IEEE J. Select. Areas Commun., vol. 22, pp. 664–676, May 2004.
    [25] J.-C. Chen, J.-H. Yeh, Y.-W. Lan, L.-W. Lin, F.-C. Chen, and S.-H. Hung, “RAMP: Reconfigurable architecture and mobility platform,” in Proc. of IEEE GLOBECOM, (St. Louis, MO, USA), pp. 3564–3569, 2005. [26] A. A.-G. Helmy, M. Jaseemuddin, and G. Bhaskara, “Multicast-based mobility: a novel architecture for efficient micromobility,” IEEE J. Select. Areas Commun., vol. 22, pp. 677–690, May 2004.
    [27] H. Kim, K.-S. D. Wong, W. Chen, and C. L. Lau, “Mobility-aware MPLS in IP-based wireless access networks,” in Proc. of IEEE Global Telecommunications Conference (GLOBECOM), (San Antonio, TX, USA), pp. 3444–3448, 2001.
    [28] J.-C. Chen and P. Agrawal, “Fast link layer and intra-domain handoffs for mobile Internet,” in Proc. of IEEE International Computer Software and Applications Conference (COMPSAC), (Taipei, Taiwan), pp. 325–330, Oct. 2000.
    [29] J. Al-Muhtadi, D. Mickunas, and R. Campbell, “A lightweight reconfigurable security mechanism for 3G/4G mobile devices,” IEEE Wireless Commun. Mag., vol. 9, pp. 60–65, Apr. 2002.
    [30] N. Georganopoulos, T. Farnham, R. Burgess, T. Scholer, J. Sessler, P. Warr, Z. Golubicic, F. Platbrood, B. Souville, and S. Buljore, “Terminal-centric view of software reconfigurable system architecture and enabling components and technologies,” IEEE Commun. Mag., vol. 42, pp. 100–110, May 2004.
    [31] “GENI: global environment for network innovation.” http://www.geni.net/.
    [32] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley, and E. Schooler, “SIP: Session initiation protocol.” IETF RFC 3261, June 2002.
    [33] A. Dutta, F. Vakil, J.-C. Chen, M. Tauil, S. Baba, N. Nakajima, and H. Schulzrinne, “Application layer mobility management scheme for wireless Internet,” in Proc. of IEEE International Conference on Third Generation Wireless and Beyond (3G Wireless), (San Francisco, CA, USA), pp. 379–385, May 2001.
    [34] C. Perkins, “IP mobility support for IPv4.” IETF RFC 3344, Aug. 2002.
    [35] G. Navarro, “A guided tour to approximate string matching,” ACM Computing Surveys, vol. 33, pp. 31–88, Mar. 2001.
    [36] R. Kohno, R. Meidan, and L. B. Milstein, “Spread spectrum access methods for wireless communications,” IEEE Communications Magazine, vol. 33, pp. 58–67, Jan. 1995.
    [37] C. E. Jones, K. M. Sivalingam, P. Agrawal, and J.-C. Chen, “A survey of energy efficient network protocols for wireless networks ,” ACM Wireless Networks, vol. 7, pp. 343–358, Aug. 2001.
    [38] S.-R. Yang and Y.-B. Lin, “Performance analysis of UMTS power saving mechanism,” in Proc. of National Computer Symposium (NCS), (Taichung, Taiwan), Dec. 2003.
    [39] J.-H. Yeh, C.-C. Lee, and J.-C. Chen, “Performance analysis of energy consumption in 3GPP networks,” in Proc. of IEEE Wireless Telecommunications Symposium (WTS), (Pomona, CA, USA), pp. 67–72, May 2004.
    [40] S.-R. Yang and Y.-B. Lin, “Modeling UMTS discontinuous reception mechanism,” IEEE Transactions on Wireless Communications, vol. 4, pp. 312–319, Jan. 2005.
    [41] C.-C. Lee, J.-H. Yeh, and J.-C. Chen, “Energy efficiency in cdma2000 high-speed packet data services,” in Proc. of International Conference on Wireless Networks (ICWN), (Las Vegas, NV, USA), pp. 328–334, June 2003.
    [42] C.-C. Lee, J.-H. Yeh, and J.-C. Chen, “Impact of inactivity timer on energy consumption in WCDMA and cdma2000,” in Proc. of IEEE Wireless Telecommunications Symposium (WTS), (Pomona, CA, USA), pp. 15–24, May 2004.
    [43] “General packet radio service (GPRS) service description; stage 2.” 3GPP specification, release 6, TS 23.060 v6.13.0, June 2006.
    [44] “Radio resource control (RRC) protocol specification.” 3GPP specification, release 6, TS 25.331 v6.10.0, June 2006.
    [45] “Architecture requirements.” 3GPP specification, release 6, TS 23.221 v6.3.0, June 2004.
    [46] “Spreading and modulation (FDD).” 3GPP specification, release 6, TS 25.213 v6.5.0, Mar. 2006.
    [47] “Radio interface protocol architecture.” 3GPP specification, release 6, TS 25.301 v6.4.0, Oct. 2005.
    [48] “Physical channels and mapping of transport channels onto physical channels (FDD).” 3GPP specification, release 6, TS 25.211 v6.7.0, Dec. 2005.
    [49] “Mobile radio interface layer 3 specification; core network protocols; stage 3.” 3GPP specification, release 6, TS 24.008 v6.13.0, June 2006.
    [50] K. Parsa, “Common packet channel (CPCH): the optimum wireless Internet mechanism in W-CDMA,” in Proc. of International Conference on 3G Mobile Communication Technologies, (London, UK), pp. 148–155, Mar. 2000.
    [51] H. Holma and A. Toskala, WCDMA for UMTS. Wliey, 2001.
    [52] “UTRAN Iur interface RNSAP signalling.” 3GPP specification, release 6, TS 25.423 v6.4.0, Jan. 2005.
    [53] C. Perkins, “IP mobility support.” IETF RFC 3220, Jan. 2002.
    [54] “Data service options for spread spectrum systems: service options 33 and 66.” 3GPP2 specification, C.S0017-012-A v2.0, May 2006.
    [55] “Upper layer (layer 3) signaling standard for cdma2000 spread spectrum systems - revision D.” 3GPP2 specification, C.S0005-D v2.0, Sept. 2005.
    [56] “Interoperability specification (IOS) for cdma2000 access network interfaces - part 3 features.” 3GPP2 specification, A.S0013-C v2.0, Dec. 2005.
    [57] “3GPP2 access network interfaces interoperability specification - revision A.” 3GPP2 specification, A.S0001-A v2.0 (IOSv4.1), June 2001.
    [58] “Introduction to cdma2000 spread spectrum systems - revision D.” 3GPP2 specification, C.S0001-D v2.0, Sept. 2005.
    [59] “Selection procedures for the choice of radio transmission technologies of the UMTS.” ETSI, TR UMTS 30.03 version 3.2.0, Apr. 1998.
    [60] “1xEV-DV evaluation methodology.” 3GPP documents of 3GPP/3GPP2 joint meeting on harmonisation of high speed data service, Nov. 2001.
    [61] “MPEG–4 and H.263 video traces for network performance evaluation.” http://www-tkn.ee.tu-berlin.de/research/trace/trace.html, Dec. 2001.
    [62] M. Chatterjee and S. K. Das, “Optimal MAC state switching for cdma2000 networks,” in Proc. of IEEE INFOCOM, (New York, NY, USA), pp. 400–406, June 2002.
    [63] “Requirements for evolved UTRA (E-UTRA) and evolved UTRAN (E-UTRAN).” 3GPP specification, release 7, TR 25.913 v7.3.0, Mar. 2006.
    [64] “Technology evolution framework for 3GPP2 networks: a white paper.” 3GPP2 specification, SC.R5002-0 v1.0, Oct. 2006.
    [65] “Stage 2: architecture tenets, reference model and reference points. Part 3: informative annex.” WiMAX Forum Network Architecture, Feb. 2007.
    [66] “The network simulator - ns-2.” http://www.isi.edu/nsnam/ns.
    [67] C. W. V. Chikarmane and R. Bunt, “Implementing mobile IP routing in 4.3 BSD Unix: a case study,” Internetworking: Research and Experience, vol. 6, pp. 209–227, Dec. 1995.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE