簡易檢索 / 詳目顯示

研究生: 江銘洲
Ming-chou Chiang
論文名稱: 不同製程氧化鋁薄膜對MFIS鐵電薄膜電容結構性質之影響
指導教授: 胡塵滌
Chen-Ti Hu
呂正傑
Ching-Chich Leu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 103
中文關鍵詞: 鐵電薄膜氧化鋁鉭酸鍶鉍
外文關鍵詞: MFIS, Al2O3, SBT
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分別使用Al2O3高介電材料薄膜以及SBT鐵電薄膜作為絕緣層與鐵電層,製作Metal/Ferroelectric/Insulator/Semiconductor (MFIS)結構,並研究不同厚度與製程的Al2O3薄膜對MFIS鐵電薄膜電容的微結構與電性之影響。從實驗結果發現Pt/Al2O3/Si在熱處理後,結構中可能有介面層的生成、Al2O3薄膜緻密化、Al2O3薄膜結晶性增加與Si元素擴散等現象,並使得MIS結構的電容-電壓與電流-電壓曲線有所變化;而隨著Al2O3薄膜厚度以及熱處理時間的不同,電容-電壓曲線與電流-電壓曲線受到不同的現象主導而發生變化。在Pt/SBT/Al2O3/Si (MFIS)結構中,由SIMS分析觀察到Al元素有往兩側擴散至SBT薄膜與矽基材,以及Si元素擴散進SBT薄膜的現象,其中延長Al2O3薄膜的熱處理時間可降低Al元素的擴散,而增加Al2O3薄膜的厚度可抑制Si元素的擴散現象。由實驗結果中得知,記憶視窗值的變化受到Al2O3薄膜的厚度與熱處理時間的影響。使用不同厚度的Al2O3薄膜所導致的電荷陷阱效應也隨之不同,進而使記憶視窗值有所變化;而Al元素的擴散現象將導致MFIS結構的記憶視窗值下降,崩潰電壓降低,並造成漏電流特性劣化。綜合實驗結果,使用適中厚度的Al2O3薄膜,並經900℃熱處理三分鐘,能得到較大的MFIS記憶視窗值。


    目錄 第一章 緒論 1 1-1 前言 1 1-2 鐵電記憶體的優點 1 1-3 高介電材料(High-k)的興起 2 1-4 鐵電記憶體材料的選擇 3 1-5 研究方向 4 2-1 鐵電材料 5 2-1-1 鐵電性 5 2-1-2 鐵電材料的結構與特性 7 2-1-3 鐵電薄膜的可靠度 8 2-2-1 配方溶液的研製與調配 10 2-2-2 薄膜在基板的鍍覆 11 2-2-3 低溫焦化熱處理 11 2-2-4 高溫結晶與緻密化處理 12 2-3 鐵電薄膜的相變化 12 2-3-1 SBT鐵電薄膜之相變化 13 2-4 鐵電記憶體 14 2-4-1 歷史 14 2-4-2 鐵電薄膜在記憶體上的應用 14 2-4-3 鐵電材料應用在記憶體上的問題 16 2-4-4 MFIS結構的興起與特性 17 2-4-5 目前MFIS結構中絕緣層之研究 19 3-1 實驗簡介 35 3-2 基板的準備 35 3-2-1 絕緣層的製備 35 3-3 SBT鐵電薄膜製備 36 3-3-1 SBT溶液之TG/DTA分析 36 3-4 電極的製備 38 3-4-1 背電極的製備 38 3-4-2 頂電極的製備 38 3-5 試片代號表示 39 3-6 試片性質之量測分析 40 3-6-1 電性量測 40 3-6-2 微觀結構分析 41 第四章 結果與討論 52 4-0 簡介 52 4-1 Al2O3薄膜的XPS分析 52 4-2 熱處理條件對Al2O3薄膜表面形貌與表面粗糙度的影響 53 4-3 Pt/Al2O3/Si (MIS)結構的電性量測 54 4-3-1電容-電壓曲線圖 54 4-3-2 MIS結構EOT值與薄膜厚度之關係 54 4-3-3 MIS結構EOT值與熱處理時間之關係 55 4-3-4 MIS結構平帶電壓飄移與熱處理時間之關係 57 4-3-5 MIS結構其記憶視窗與熱處理條件之關係 58 4-3-6 電流-電壓曲線圖 59 4-4 MFIS結構中SBT鐵電薄膜之X光繞射圖形 60 4-5 SBT鐵電薄膜的SEM顯微結構 60 4-6 SBT鐵電薄膜的AFM顯微結構與表面方均根粗糙度 61 4-7 MFIS結構之SIMS縱深成分分析 62 4-8 Pt/SBT/Al2O3/Si (MFIS)結構的電性量測 64 4-8-1 電容-電壓曲線圖 64 4-8-2 MFIS結構記憶視窗與外加電壓的關係 64 4-8-3 電流-電壓曲線圖 65 第五章 結論 93 參考文獻 95 圖示目錄 圖2-1 鈣鈦礦結構內的鐵電域圖 24 圖2-2 鐵電材料極化(P)與外加電場(E)的關係 25 圖2-3 鈣鈦礦結構 26 圖2-4 SrBi2Ta2O9的層狀鈣鈦礦結構 27 圖2-5 浸鍍的過程 28 圖2-6 旋鍍的過程 28 圖2-7 SBT內三種相之X光繞射圖形 29 圖2-8 鐵電薄膜用於DRAM之操作示意圖 30 圖2-9 一般線性介電值(a)與非線性介電值(b) 30 圖2-10 1T-1C type鐵電記憶體操作原理示意圖 31 圖2-11 1T type鐵電記憶體操作原理示意圖 32 圖2-12 Al2O3塊材的相變化行為 33 圖2-13 Al2O3薄膜的相變化行為 34 圖3-1 ALD的製程原理示意圖 46 圖3-2 DTA原理示意圖 47 圖3-3 SBT溶液之TG分析 48 圖3-4 SBT溶液之DTA分析 48 圖3-5 MFIS鐵電電容結構 49 圖3-6 實驗步驟流程圖 50 圖3-7 光電子的平均自由行程與動能的關係 51 圖4-1 鍍製60回之Al2O3薄膜經不同熱處理時間後的XPS分析 67 圖4-2 鍍製90回之Al2O3薄膜經不同熱處理時間後的XPS分析 68 圖4-3 鍍製120回之Al2O3薄膜經不同熱處理時間後的XPS分析 69 圖4-4 不同厚度之Al2O3薄膜剛鍍製完後的AFM表面影像 70 圖4-5 不同厚度之Al2O3薄膜經熱處理一分鐘後的AFM表面影像 71 圖4-6 不同厚度之Al2O3薄膜經熱處理三分鐘後的AFM表面影像 72 圖4-7 Al2O3薄膜表面粗糙度隨熱處理條件之變化 73 圖4-8 MIS結構之電容-電壓曲線圖 74 圖4-9 剛鍍製後的Al2O3薄膜EOT值與厚度之關係 75 圖4-10 各種Al2O3薄膜之EOT值隨熱處理時間變化情形 76 圖4-11 Al2O3薄膜平帶電壓飄移與熱處理時間之變化 77 圖4-12 Al2O3薄膜記憶視窗隨熱處理時間之變化 78 圖4-13 MIS結構之電流-電壓曲線圖 79 圖4-14 MFIS結構之X光繞射圖形 80 圖4-15 MFIS結構之低倍率SEM表面形貌影像 81 圖4-16 MFIS結構之高倍率SEM表面形貌影像 82 圖4-17 MFIS結構之SEM橫截面結構影像 83 圖4-18 Al2O3薄膜經一分鐘熱處理的MFIS結構之AFM表面影像 84 圖4-19 Al2O3薄膜經三分鐘熱處理的MFIS結構之AFM表面影像 85 圖4-20 MIS與MFIS結構之表面方均根粗糙度關係 86 圖4-21 MFIS結構在結晶熱處理前的縱深成分分析圖 87 圖4-22 MFIS結構經過結晶熱處理後的縱深成分分析圖 88 圖4-23 不同Al2O3薄膜對MFIS結構縱深成分分佈之影響 89 圖4-24 MFIS結構的電容-電壓曲線圖 90 圖4-25 MFIS結構的記憶視窗隨外加電壓之變化 91 圖4-26 MFIS結構的電流-電壓曲線圖 92

    1. B. Y. Tsui and H. W. Chang, “Formation of interfacial layer during reactive sputtering of hafnium oxide”, J. Appl. Phys. Vol. 93, pp. 10119-10124 (2003)
    2. B. Yu, H. Wang, C. Riccobene, Q. Xiang, and M.R. Lin, Symp. on VLSI Tech. Dig. P90 (2000)
    3. 吳啟明, “The Study of (BaSr)TiO3 Thin Films Deposited on LaNiO3 Electrode by rf Magnetron Sputtering for DRAMs Applications”, 清華大學, 博士論文(1997)
    4. M. S. Chen, T. B. Wu, and J. M. Wu, “Effect of textured LaNiO3 electrode on the fatigue improvementof Pb(Zr0.53Ti0.47)O3 thin films”, Appl. Phys. Lett., Vol. 68, pp. 1430-1432 (1996).
    5. C. B. Eom, R. B. Van Dover, J. M. Phillips, D. J. Werder, J. H. Marshall, C. H. Chen, R. J. Cava, R. M. Fleming, and D. K. Fork, “Fabrication and properties of epitaxial ferroelectric heterostructures with (SrRu03) isotropic metallic oxide electrodes”, Appl. Phys. Lett., Vol. 63, pp. 2570-2572 (1993).
    6. R. Ramesh, W. K. Chan, B. Wilkens, H. Gilchrist, T. Sands, J. M. Tarascon, V. G. Keramidas, D. K. Fork, J. Lee and A. Safari, “Fatigue and retention in ferroelectric Y-Ba-Cu-O/Pb-Zr-Ti-Q/Y-Ba-Cu-O heterostructures”, Appl. Phys. Lett., Vol. 61, pp. 1537-1539 (1992).
    7. FL Ramesh, A. Inam, W. K. Chan, F. Tillerot, B. Wilkens, C. C. Chang, T. Sands, J. M. Tarascon, and V. G. Keramidas, “Ferroelectric PbZr0.2Ti0.8O3 thin films on epitaxial Y-Ba-Cu-O”, Appl. Phys. Lett., Vol. 59, pp. 3542-3544 (1991).
    8. R. Dat, D. J. Lichtenwalner, 0. Auciello, and A. I. Kingon, “Polycrystalline La0.5Sr0.5CoO3/PbZr0.53Ti0.47O3/La0.5Sr0.5CoO3 ferroelectric capacitors on platinized silicon with no polarization fatigue”, Appl. Phys. Lett., Vol. 64, pp. 2673-2675 (1994)
    9. C. C. Leu, C. H. Chien, M. J. Yang, M. C. Yang, T. Y. Huang, H. T. Lin, and C. T. Hu, “Effects of ultrathin tantalum seeding layers on sol-gel-derived SrBi2Ta2O9 thin films”, Appl. Phys. Lett. Vol. 80, pp. 4600-4602 (2002)
    10. W. C. Shin, K. J. Choi, and S. G. Yoon, “Low-temperature crystallization of SrBi2Ta2O9 thin films with Bi2O3 interfacial layers by liquid-delivery metalorganic chemical vapor deposition”, J. Mater. Res. Vol. 17, No. 1, pp. 26-30 (2002)
    11. Y. ito, M. Ushikubo, S. Yokoyama, H. Matsunaga, T. Atsuki, T. Yonezawa, and K. Ogi, “New low temperature processing of sol-gel SrBi2Ta2O9 thin films”, Integ. Ferro. Vol.14, pp. 123-131(1997)
    12. T. Chiun, T. Li, X. Zhang, and S. B. Desu, “The effect of excess bismuth on the ferroelectric properties of SrBi2Ta2O9 thin film”, J. Mater. Res. Vol. 12, No. 6, pp. 1569-1575 (1997)
    13. S. Bhattacharyya, A. Laha, and S. B. Krupanidhi, “Impact of Sr content on dielectric and electrical properties of pulsed laser ablated SrBi2Ta2O9 thin films”, J. Appl. Phys. Vol. 92, pp. 1056-1061 (2002)
    14. 錢維烈, 鐵電物理學, 科學出版社 (1996)
    15. X. Xu, “Ferroelectric Materials and their application”, North Holland, Netherlands (1991)
    16. 鄭晃忠, 史德智, “極大型積體電路之鐵電材料”, 電子月刊, 第五卷第六期 (1999)
    17. 陳銘森, ”鎳酸鑭電極對鋯鈦酸鉛溶凝膠製作與特性影響之研究”, 清華大學, 博士論文 (1996)
    18. Ismunandar and B. J. Kennedy, and Marsongkohadi, “Structure of ABi2Nb2O9(A=Sr, Ba): Refinement of Powder Neutron Diffraction Data”, J. Solid State Chem. Vol. 126, pp. 135-141 (1996)
    19. A. Gonzalez, R. Jimenez, J. Mendiola, C. Alemany, and M. L. Calzada, “Ultrathin ferroelectric strontium bismuth tantalate films”, Appl. Phys. Lett. Vol. 81, pp. 2599-2601 (2002)
    20. K. Amanuma, T. Hase, and Y. Miyasaka, “Preparation and ferroelectric properties of SrBi2Ta2O9 thin films”, Appl. Phys. Lett. Vol. 66, pp. 221-223 (1995)
    21. Y. Shinada, A. Azuma, Keisaku, S. Chaya, N. Moriwaki, and T. Otsuki, “Retention Characteristics of a Ferroelectric Memory based on SrBi2(Ta,Nb)2O9”, Jpn. J. Appl. Phys. Vol. 36, pp. 5912-5916 (1997)
    22. H. N. Al-Shareef, D. Dimos, W. L. Warren, and B. A. Tuttle, “Voltage offsets and imprint mechanism in SrBi2Ta2O9 thin films ”, J. Appl. Phys. Vol. 80, pp. 4573-4577 (1996)
    23. 陳三元, “強介電薄膜之液相化學製作法”, 工業材料, p108 (1995)
    24. J. S. Lee, H. J. Kwon, S. J. Hyun, and T. W. Noh, “Structure characterization of the low-temperature phase in Sr-Bi-Ta-O films”, Appl. Phys. Lett. Vol. 74, pp. 2690-2692 (1999)
    25. M. A. Rodriguez, T. J. Boyla, B. A. Hernandez, C. D. Buchheit, and M. O. Eatough, “Formation of SrBi2Ta2O9: Part1. Evidence of a bismuth-deficient pyrochlore phase”, J. Mater. Res. Vol. 11, pp. 2282-2287 (1996)
    26. C.-H. Lu, B.-K. Fang, and C.-Y. Wen, “Structure Identification and Electrical Properties of the New Pyrochlore Phase in the Sr-Bi-Ta-Ti-O system”, Jpn. J. Appl. Vol. 39, pp. 5573-5576 (2000)
    27. I. Koiwa, Y. Okada, J. Mita, A. Hashimoto, and Y. Sawada, “Role of Excess Bi in SrBi2Ta2O9 Thin Film Prepared Using Chemical Liquid Deposition and Sol-Gel Method”, Jpn. J. Appl. Phys. Vol.36, pp. 5904-5907 (1997)
    28. T. Osaka, A. Sakakibara, T. Seki, S. Ono, I. Koiwa, and A. Hashimoto, “Phase Transition in Ferroelectric SrBi2Ta2O9 Thin Films with Change of Heat-treatment Temperature”, Jpn. J. Appl. Phys. Vol. 37, pp. 597-601 (1998)
    29. T. J. Boyle, C. D. Buchheit, M. A. Rodriguez, H. N. Al-Shareef, and B. A. Hernandez, “Formation of SrBi2Ta2O9: Part 1. Synthesis and characterization of a novel sol-gel solution for production of ferroelectric SrBi2Ta2O9 thin film”, J. Mater. Res. Vol. 11, pp. 2274-2281 (1996)
    30. S. Y. Wu, IEEE Trans. Electron Devices ED21 (1974)
    31. 彭成鑑, “強介電陶瓷材料在動態隨機記憶體上的應用”, 工業材料, p107 (1995)
    32. 呂正傑, 詹世雄, “鐵電記憶體簡介”, 毫微米通訊第五卷第四期
    33. J. Pak, E. Ko, J. Baek, K. Nam, and G. Park, “Electrical Characterizations of Bi3.25La0.75Ti3O12 Thin Films on Thermally Oxidized p-Si Substrates”, Integrated Ferroelectrics, Vol. 79, pp. 163-170 (2006)
    34. J. Pak, E. Ko, K. Nam, G. Park, “Electrical properties of (Bi,La)4Ti3O12-based ferroelectric-gated field effect transistors employed with a thermally oxidized SiO2 layer”, Journal of the European Ceramic Society, Vol. 25, pp. 2309–2312 (2005)
    35. M. Hirakawa, G. Hirooka, Minoru noda, M. Okuyama, K. HondA, A. Masuda, and H. Matsumura, ” Nitridation of Ultrathin SiO2 Layers in Metal-Ferroelectric-Insulator-Semiconductor Structures”, Integrated Ferroelectrics, Vol. 68, pp. 29-36 (2004)
    36. C. H. Huang, Y. K. Wang, H. T. Lue, J. Y. Huang, M. Z. Lee, T. Y. Tseng, “Memory properties of metal/ferroelectric/semiconductor and metal/ferroelectric/insulator/semiconductor structures using rf sputtered ferroelectric Sr0.8Bi2.5Ta1.2Nb0.8O9 thin films”, Journal of the European Ceramic Society, Vol. 24, pp. 2471–2476 (2004)
    37. Ch.H. Yang, Zh. Wang, J.F. Hub, Y.G. Yang, X. Zhang, F.Y. Jiang, and J.R. Han, “Characteristics of metal–ferroelectric–insulator–semiconductor structure using a Nd-doped Bi4Ti3O12 ferroelectric layer”, Journal of Crystal Growth, Vol. 267, pp. 543–547 (2004)
    38. E. Ko, J. Pak, K. Nam, and G. Park, “Inverse Capacitance-Voltage Characteristics of Bi3.25La0.75Ti3O12 Thin Film Pulsed Laser Deposited on Thermally Oxidized n-Type Si Suhstrates”, Integrated ferroelectrics, Vol. 65, pp. 175-182 (2004)
    39. J. Robertson, “Band structures and band offsets of high K dielectric on Si”, Applied Surface Science, Vol. 190, pp. 2-10 (2002).
    40. S. M. Hu, “Stress-related problems in silicon technology”, J. Appl. Phys. Vol. 70 (6), pp. R53-R80 (1991)
    41. J. P. Han, S. M. Koo, C. A. Richter, and E. M. Vogel, “Influence of buffer layer thickness on memory effects of SrBi2Ta2O9/SiN/Si structures”, Appl. Phys Lett., Vol. 85, pp. 1439-1441 (2004)
    42. J. Lee, J. Pak, K. Nam, J. Kim, E. Ko, AND G. Park, “Characteristics of Au/Bi3.25La0.75Ti3O12/Si3N4/Si Ferroelectric Field Effect Transistors”, Ferroelectrics, Vol. 328, pp.127-131 (2005)
    43. E. K. Evangelou, C. Wiemer, M. Fanciulli, M. Sethu, and W.Ctanton, “Electrical and structural characteristics of yttrium oxide films deposited by rf-magnetron sputtering on n-Si”, J. Appl. Phys., Vol. 96, pp. 318-325 (2003)
    44. K. Haratake, N. Shigemitsu, M. Nishijima, T. Yoshimura and N. Fujimura, “Low-Temperature Growth and Characterization of Epitaxial YMnO3/Y2O3/Si MFIS Capacitors with Thinner Insulator Layer”, Jpn. J. Appl. Phys., Vol. 44, pp. 6977–6980 (2005)
    45. D. Ito, N. Fujimura, T. Yoshimura, and T. Ito, “Ferroelectric properties of YMnO3 epitaxial films for ferroelectric-gate field-effect transistors”, J, Appl. Phys., Vol 93, pp. 5563-5567 (2003)
    46. S. I. Shim, Y. S. Kwon , S. I. Kim , Y. T. Kim , J. H. Park, “Memory operation of Pt–SrBi2Ta2O9–Y2O3–Si field-effect transistor with damage-free selective dry etching process”, Solid-State Electronics, Vol. 49, pp. 497–504 (2005)
    47. S. I. Shim, Y. S. Kwon, S. I. Kim, Y. T. Kim, and J. H. Park, “Fabrication of MFISFETs with Pt/SrBi2Ta2O9/Y2O3/Si gate structure by developing an etch-stop process”, Phys. Stat. Sol. Vol. 201, pp. R65– R68 (2004)
    48. C. Y. Chang, Trevor P. C. Juan, and Joseph Y. M. Lee, “Fabrication and characterization of metal-ferroelectric (PbZr0.53Ti0.47O3)-insulator (Dy2O3)-semiconductor capacitors for nonvolatile memory applications”, Appl. Phys. Lett., Vol 88, 072917 (2006)
    49. Trevor P. C Juan, C. Y. Chang, and Joseph Y. M Lee, “A New Metal–Ferroelectric (PbZr0.53Ti0.47O3)–Insulator (Dy2O3)–Semiconductor (MFIS) FET for Nonvolatile Memory Applications”, IEEE Electron Device Letters, Vol. 27, pp. 217-220 (2006)
    50. A.I. Kingon, J.P. Maria, S.K. Streiffer, “Alternative dielectrics to silicon dioxide for memory and logic devices”, Nature, Vol. 46, PP. 1032 (2000)
    51. Y. J. Wang, A. D. Li, D. Wu, Q. Y. Shao, H. Q. Ling, X. B. Lu, Z. G. Liu and N. B. Ming “Electrical properties of Bi3.25La0.75Ti3O12/LaAlO3/Si structures for ferroelectric field effect transistor applications”, J. Phys. D: Appl. Phys., Vol. 37, pp. 832–835 (2004)
    52. A.-D. Li, Y.-J.Wang, Q.-Y. Shao, J.-B. Cheng, D.Wu, H.-Q. Ling, Y.-J. Bao, M. Wang, Z.-G. Liu, N.-B. Ming, “Characteristics of SrBi2Ta2O9 ferroelectric films on Si using LaAlO3 thin film as an insulator”, Appl. Phys. A, Vol. 81, pp. 1273–1276 (2005)
    53. K. Takahashi, K. Aizawa, B. E. Park and H. Ishiwara, “Thirty-Day-Long Data Retention in Ferroelectric-Gate Field-Effect Transistors with HfO2 Buffer Layers”, Jpn. J. Appl. Phys., Vol. 44, pp. 6218–6220, (2005)
    54. D. Y. Wang and C. Y. Chang, “Basic Characteristics of Pt/SrBi2Ta2O9/HfO2/Si Structure Using Layer-By-Layer Crystallization”, Journal of The Electrochemical Society, Vol. 152, G678-G683 (2005)
    55. S. Ohara, K. Aizawa and H. Ishiwara, “Ferroelectric Properties of Pt/Pb5Ge3O11/Pt and Pt/Pb5Ge3O11/HfO2/Si Structures”, Jpn. J. Appl. Phys., pp. 6644–6647 (2005)
    56. B. E. Park, K. Takahashi, and H. Ishiwara, “Five-day-long ferroelectric memory effect in Pt/(Bi,La)4Ti3O12/HfO2/Si structures”, Appl. Phys. Lett., Vol. 85, pp. 4448-4450 (2004)
    57. V. Tabuchi, B. E. Park, K. Aizawa, Y. Kawashima, K. Takahashi, K. Kato, Y. Arimoto, and H. Ishiwara, “Formation of Ferroelectric (Bi, Nd)4Ti3O12 Thin Films on HfO2/Si(100) Structures for MFIS-type Ferroelectric Memory Applications”, Integrated ferroelectrics, Vol. 65, pp. 125-134 (2004)
    58. K. Aizawa, B. E. Park, Y. K., K. Takahashi, and H. Ishiwara, “Impact of HfO2 buffer layers on data retention characteristics of ferroelectric-gate field-effect transistors”, Appl. Phys. Lett., Vol. 85, pp. 3199-3201 (2004)
    59. P. C. Juan, Y. P. Hu, F. C. Chiu, and Joseph Y. M. Lee, “The charge trapping effect of metal-ferroelectric (PbZr0.53Ti0.47O3)-insulator (HfO2)-silicon capacitors”, J. Appl. Phys., Vol.98, 044103 (2005)
    60. S. Sakai, R. Ilangovan and M. Takahashi, “Pt/SrBi2Ta2O9/Hf-Al-O/Si Field-Effect-Transistor with Long Retention Using Unsaturated Ferroelectric Polarization Switching”, Jpn. J. Appl. Phys., Vol. 43, pp. 7876–7878 (2004)
    61. Q. H. Li and S. Sakai, “Characterization of Pt/SrBi2Ta2O9/Hf–Al–O/Si field-effect transistors at elevated temperatures”, Appl. Phys. Lett., Vol. 89, 22901 (2006)
    62. C. L. Sun, S. Y. C., Sh. B. Chen and Albert Chin, “Effect of annealing temperature on physical and electrical properties of Bi3.25La0.75Ti3O12 thin films on Al2O3-buffered Si”, Appl. Phys. Lett., Vol. 80 pp. 1984-1986 (2002)
    63. B. C. Lan, S. Y. Chen, and H. Y. Lee, “Temperature dependent integrity of Sr0.8Bi2Ta2O9 films on ultra-thin Al2O3 buffered Si”, Materials Chemistry and Physics, Vol. 80, pp. 325-328 (2003)
    64. C. L. Sun and S. Y. Chen, “Role of Interface Reaction at High Temperature in Electrical Characteristics of Bi3.25La0.75Ti3O12/Al2O3/Si Capacitors”, J. Electrochem. Soc., Vol. 150, pp. C600-C602 (2003)
    65. B. C. Lan, C. Y. Huang, and S. Y. Chen, “Physical characteristics and electrical properties of Sr0.8Bi2+xTa2O9 films on Al2O3/Si annealed at high temperature”, J. Appl. Phys., Vol. 94, pp. 6735-6740 (2003)
    66. S. Y. Chen, C. L. Sun, S. B. Chen, and Albert Chin, “Bi3.25La0.75Ti3O12 thin films on ultrathin Al2O3 buffered Si for ferroelectric memory application”, Appl. Phys. Lett., Vol. 80, pp. 3168-3170 (2002)
    67. C. L. Sun, S. Y. Chen, M. Y. Yang, and Albert Chin, “Characteristics of Pb(Zr0.53Ti0.47)O3 on Metal and Al2O3/Si Substrates”, J. Electrochem. Soc., Vol. 148, pp. F203-F206 (2001)
    68. C. L. Sun, J. J. Hsu, S. Y. Chen, and Albert Chin, “Effect of Zr/Ti Ratios on Characterization of Pb(ZrxTi1-x)O3 Thin Films on Al2O3 Buffered Si for One-Transistor Memory Applications”, J. Electrochem. Soc., Vol. 150, pp. G187-G191 (2003)
    69. H. J. Chang, S. H. Hwang, H. Jeon, Y. C. Kim, K.Sawada, and M. Ishida, “Crystalline and electrical properties of (Bi,La)Ti3O12 thin films coated on Al2O3/Si substrates”, Thin Solid Films, Vol. 443, pp. 136-143 (2003)
    70. D. Akai, K. Sawada, and M. Ishida, “Fabrication of Pb(Zr,Ti)O3 films on epitaxial γ-Al2O3(0 0 1)/Si(0 0 1) substrates”, Journal of Crystal Growth, Vol. 259, pp. 90-94 (2003)
    71. J. W. Kim, J. H. Choi, and T. S. Oh, “Electrical characteristics of SrxBi2.4Ta2O9 thin film and Pt/Sr0.85Bi2.4Ta2O9/Al2O3/Si structure”, J. Mater. Sci., Vol. 38, pp. 1853-1857 (2003)
    72. L.G. Gosset, J.-F. Damlencourt, O. Renault, D. Rouchon, and Ph. Holliger, “Interface and material characterization of thin Al2O3 layers deposited by ALD using TMA/H2O”, Journal of Non-Crystalline Solids, Vol. 303, pp. 17–23 (2002)
    73. M. Xu, C. H. Xu, S. J. Ding, H. L. Lu, David W. Zhang, and L. K. Wang, “Spectroscopic and electrical properties of atomic layer deposition Al2O3 gate dielectric on surface pretreated Si substrate”, J. Appl. Phys., Vol. 99, 074109 (2006)
    74. Y. Chang, F. Ducroquet, E. Gautier, O. Renault, J. Legrand, J.F. Damlencourt, and F. Martin, “Surface preparation and post thermal treatment effects on interface properties of thin Al2O3 films deposited by ALD”, Microelectronic Engineering, Vol. 72, pp. 326–331(2004)
    75. F. J. Himpsel, F. R. McFeely, A. Taleb-lbrahimi, J. A. Yarmoff, and G. Hollinger, “ Microscopic structure of the SiO2/Si interface”, Phys. Rev. B Vol. 38, pp 6084-6096 (1988)
    76. C. Krug, E. B. O. da Rosa, R. M. C. de Almeida, J. Morais, I. J. R. Baumvol, T. D. M. Salgado, and F. C. Stedile, “Atomic Transport and Chemical Stability during Annealing of Ultrathin Al2O3 Films on Si”, Physical Review Letter, Vol. 85, pp. 4120-4123 (2000)
    77. T. Nabatame, T.Yasuda, M. Nishizawa, M. Ikeda, T. Horikawa and A. Toriumi, “Comparative Studies on Oxygen Diffusion Coefficients for Amorphous and γ-Al2O3 Films using 18O Isotope”, Jpn. J. Appl. Phys., Vol. 42, pp. 7205–7208 (2003)
    78. S. Jakschika, U. Schroeder, T. Hecht, M. Gutsche, H. Seidl, and J. W. Bartha, “Crystallization behavior of thin ALD-Al2O3 films”, Thin Solid Films, Vol. 425, pp. 216–220 (2003)
    79. A. Stesmans and V. V. Afanas’ev, “Si dangling-bond-type defects at the interface of (100)Si with ultrathin layers of SiOx, Al2O3 , and ZrO2”, Appl. Phys. Lett., Vol. 80, pp. 1957-1959 (2002)
    80. V. V. Afanas’ev, and A. Stesmans, “Hole trapping in ultrathin Al2O3 and ZrO2 insulators on silicon”, Appl. Phys. Lett., Vol. 80, pp. 1261-1263 (2002)
    81. G Krautheim, T Hecht, S Jakschik, U Schr□der,and W Zahn, “Mechanical stress in ALD-Al2O3 films”, Appl. Surf. Sci., Vol. 252, pp. 200-204 (2005)
    82. M.P. Seah and W.A. Deuch, Surf. Interface Anal., Vol. 1 pp. 2 (1979)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE