簡易檢索 / 詳目顯示

研究生: 凃逸凡
Tu, I-Fan
論文名稱: 幽門桿菌Lon蛋白酶減緩抗生素咪唑尼達活化
Lon protease decreases activation of the antibiotic metronidazole in Helicobacter pylori
指導教授: 詹鴻霖
Chan, Hong-Lin
吳世雄
Wu, Shih-Hsiung
口試委員: 林念璁
Lin, Nien-Tsung
蘇士哲
Sue, Shih-Che
李岳倫
Lee, Yueh-Luen
高茂傑
Kao, Mou-Chieh
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 94
中文關鍵詞: 幽門桿菌Lon蛋白酶咪唑尼達
外文關鍵詞: H. pylori, Lon protease, metronidazole
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 原核生物內的Lon蛋白酶參與水解結構折疊有誤的蛋白質,同時能藉由控制其下游受質數量多寡來調控各種生物生裡反應。幽門桿菌的Lon蛋白酶(HpLon)至今角色未明,只知道在細菌生長過程中會持續表現。在本研究中發現磷酸複合體(polyphosphate)會增強HpLon蛋白酶及短肽鍊酶水解活性,同時磷酸複合體也會影響HpLon與雙股DNA結合能力。為了瞭解HpLon在幽門桿菌中扮演的生物角色,本研究採用trapping approach搭配蛋白質體學方法辨識何種蛋白會與HpLon交互作用。實驗結果顯示大部分會與HpLon結合的蛋白質大多參與咪唑尼達(metronidazole)活化有關,特別是RdxA蛋白為幽門桿菌菌體於活化咪唑尼達專一性最高的酵素。咪唑尼達常用於治療幽門桿菌感染的第一線藥物之一。實驗中將HpLon基因從幽門桿菌中剃除,發現該突變株對於咪唑尼達敏感度增加,顯示HpLon與咪唑尼達活化有關。HpLon藉由降低RdxA之NADPH氧化活性及咪唑尼達還原活性來減緩咪唑尼達活化速率,這樣的調控方式是藉由HpLon上的AAA+ module (ATPases Associated with diverse Activities)結合NADPH再作用於RdxA,即便幽門桿菌菌體內的HpLon失去蛋白酶活性,也不會影響幽門桿菌對咪唑尼達的敏感度。本研究為第一篇針對幽門桿菌HpLon蛋白做功能性探討,同時釐清HpLon如何從蛋白質層面調控RdxA活性,藉以影響咪唑尼達在菌體內的活化。


    The prokaryotic ATP-dependent Lon protease participates in the turnover of misfolded proteins and mediates the activity of regulatory proteins in diverse cellular processes. The lon gene of Helicobacter pylori strains is constitutively expressed during growth. The biological role of Lon protease in H. pylori (HpLon) is unclear so far. In this study, we found that polyphosphate (polyP) enhanced the protease and peptidase activity of HpLon. PolyP also competed with double strand DNA (dsDNA) for HpLon binding. In order to elucidate the function and physiological role of HpLon in H. pylori, a trapping approach was used to identify putative Lon binding partners in the bacterium. Many of HpLon-interacting partners were found to be associated with the activation of metronidazole (Mtz), which is widely used in first-line therapy against H. pylori infections. In addition, we constructed a lon-deficient mutant more susceptible to Mtz than the wild-type form. A proteomic analysis identified RdxA, which encodes oxygen-insensitive NADPH nitroreductase, a major Mtz-activating enzyme in H. pylori. RdxA is a physiological interacting partner of HpLon and is not cleaved by the protease. We found that the AAA+ module (ATPases Associated with diverse Activities) in HpLon causes a decrease in both NADPH oxidase and Mtz reductase activity in RdxA. This result explains why the protease-defective lon mutant (lonS741A mutant) exhibits the same level of Mtz susceptibility as wild-type H. pylori. Our results are consistent with a model in which HpLon recruits the ADP moiety of NADPH through the AAA+ module to interact with RdxA and thereby further decreases its NADPH-oxidizing and Mtz-reducing activities. This is the first study to figure out how HpLon regulates RdxA activity and participate the process of Mtz activation in H. pylori.

    Table of content Abstract / 1 致謝 / 3 Table of content / 4 Abbreviations / 8 Chapter 1. Introduction 1.1 Helicobacter / 9 1.1.1 Overview / 9 1.1.2 The bacteriology of H. pylori / 9 1.1.3 The pathogenesis of H. pylori / 10 1.2 The mechanism of antibiotic action and antibiotic resistant in H. pylori 1.2.1 Overview of antimicrobial agents against H. pylori / 11 1.2.2 The introduction of Metronidazole (Mtz) and Mtz resistance mechanism among the pathogens / 13 1.2.3 Mtz resistance mechanism of H. pylori / 14 1.2.4 The introduction of RdxA in H. pylori / 15 1.2.5 The introduction of Nitazoxanide (NTZ) and mode of action / 16 1.3 The treatment against H. pylori infection 1.3.1 The introduction of current therapy for H. pylori infection / 17 1.3.2 Clinical effect of antimicrobial resistance / 18 1.4 The introduction of Lon protease 1.4.1 The biochemistry and structure studies in Lon protease / 18 1.4.2 Biological role of ATP-dependent Lon protease / 21 1.5 The current studies of polypohosphate (polyP) in H. pylori / 22 1.6 The current studies in H. pylori Lon (HpLon) / 23 1.7 The aim of this work / 23 Chapter 2. Materials and Methods 2.1 Bacterial strains and growth conditions / 25 2.2 Allelic exchange mutagenesis and complementation in H. pylori / 25 2.3 Expression and purification of RdxA and HpLon / 26 2.4 ATPase activity assay / 27 2.5 Protease activity assay / 27 2.6 Peptidase assay / 28 2.7 Gel mobility shift assays (GMSA) / 28 2.8 Circular-dichroism spectroscopy (CD) / 28 2.9 Intrinsic tryptophan fluorescence measurements / 29 2.10 HpLon trapping proteins identification / 29 2.11 Antibiotic disk diffusion assay and E test susceptibility assay / 30 2.12 Alkaline gel DNA analysis / 30 2.13 NADPH oxidase detection / 31 2.14 Measurement of Mtz reduction / 31 Chapter 3. Result 3.1 The biophysical and biochemistry of HpLon determination / 33 3.2 HpLon trapping proteins are involved in the Mtz-induced metabolic changes in H. pylori / 35 3.3 The antibiotic susceptibility of H. pylori / 36 3.4 RdxA is not a substrate of HpLon protease / 37 3.5 The AAA+ module of HpLon modulates RdxA oxidase and reductase activities / 37 3.6 NADPH abates the ATPase activity in HpLon / 38 Chapter 4. Discussion 4.1 The PolyP effect on Mtz-susceptibility of H. pylori / 40 4.2 Comparison of the potential role of EcLon and HpLon for the development of multi-drug resistant bacteria / 41 4.3 The effect of HpLon on Mtz susceptibility in H. pylori 4.3.1 HpLon affects NADPH oxidation and Mtz reduction of RdxA through AAA+ module / 42 4.3.2 The binding partner of HpLon identification represents the relationship between HpLon and Mtz / 44 4.3.3 Comparison of two nitroreductase in H. pylori, RdxA and FrxA, for the contribution of Mtz activation / 45 4.4 The proposed mechanism of HpLon on the development of Mtz resistance in H. pylori / 46 Chapter 5. Reference / 48 Chapter 6. Table Table 1. Bacterial strains and plasmids in this study/ 64 Table 2. Trapping proteins were identified by proteomics analysis / 66 Table 3. Antibiotics susceptibility in H. pylori reference strain 26695 and its derivative lon mutant /68 Table 4. Comparison the Mtz susceptibility in wildtype and derivative lon mutant among H. pylori strains / 69 Table 5. HpLon affects RdxA activity, including NADPH oxidase and Mtz reductase / 70 Chapter 7. Figure Fig.1 Multiple alignment of LonA protease sequences among bacteria and the identification of functional domains in HpLon / 71 Fig. 2 Enzymatic activity determination of HpLon / 73 Fig. 3 Protease and peptidase activity of HpLon determination in presence of polyP / 74 Fig. 4 The effect of HpLon or HpLon_α and polyP interaction on DNA binding by Gel mobility shift assays (GMSA) analysis / 75 Fig. 5 The effect of polyP on the HpLon structure by CD and intrinsic Trp fluorescence spectrum / 76 Fig. 6 HpLon detection in H. pylori derivative mutants by western blot / 77 Fig. 7 H. pylori susceptibility to metronidazole / 78 Fig. 8 Mtz induces DNA fragmentation in H. pylori / 79 Fig. 9 HpLon protease activity is not necessary for RdxA and Mtz activation / 80 Fig. 10 Pull-down assay of HpLon and RdxA complex after overexpression in E. coli / 82 Fig. 11 NADPH competes with ATP for HpLon binding / 84 Fig. 12 NADH oxidation by RdxA in presence of polyP / 85 Fig. 13 The disk diffusion assay of Nitazoxanide (NTZ, A) and Nitrofurantoin (B) to detect the susceptibility of H. pylori 26695 and its lon mutant / 86 Fig. 14 Proposed model for HpLon effect on Mtz activation in H. pylori / 87 Chapter 8. Appendix Supporting fig. 1 Structure-based studying in RdxA and FrxA / 88 Supporting fig. 2 The crystal structure of the AAA+ module (PDB: 1D2N) / 90 Supporting table 1. The summary of transcriptional factors and regulators in H. pylori / 91 Supporting table 2. The mechanism of clinical antibiotics for H. pylori treatment / 92 Supporting table 3. Recommended first-line therapies for Helicobacter pylori infection in 2011 to 2012 / 93 Supporting table 4. The enzymatic activity comparison of RdxA and FrxA / 94

    1. Marshall BJ, Warren JR. 1983. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 1:1273-1275.
    2. Marshall BJ, Warren JR. 1984. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1:1311-1315.
    3. Suerbaum S, Michetti P. 2002. Helicobacter pylori infection. The New England journal of medicine 347:1175-1186.
    4. Danielli A, Amore G, Scarlato V. 2010. Built shallow to maintain homeostasis and persistent infection: insight into the transcriptional regulatory network of the gastric human pathogen Helicobacter pylori. PLoS pathogens 6:e1000938.
    5. Kusters JG, Van Vliet AH, Kuipers EJ. 2006. Pathogenesis of Helicobacter pylori infection. Clinical microbiology reviews 19:449-490.
    6. Atherton JC. 2006. The pathogenesis of Helicobacter pylori-induced gastro-duodenal diseases. Annual review of pathology 1:63-96.
    7. Cid TP, Fernandez MC, Benito Martinez S, Jones NL. 2013. Pathogenesis of Helicobacter pylori infection. Helicobacter 18 Suppl 1:12-17.
    8. Hatakeyama M. 2014. Helicobacter pylori CagA and gastric cancer: a paradigm for hit-and-run carcinogenesis. Cell host & microbe 15:306-316.
    9. Hatakeyama M. 2004. Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nature reviews. Cancer 4:688-694.
    10. Peek RM, Jr., Blaser MJ. 2002. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nature reviews. Cancer 2:28-37.
    11. Kuo CH, Kuo FC, Hu HM, Liu CJ, Wang SS, Chen YH, Hsieh MC, Hou MF, Wu DC. 2012. The Optimal First-Line Therapy of Helicobacter pylori Infection in Year 2012. Gastroenterology research and practice 2012:168361.
    12. Poon SK, Lai CH, Chang CS, Lin WY, Chang YC, Wang HJ, Lin PH, Lin HJ, Wang WC. 2009. Prevalence of antimicrobial resistance in Helicobacter pylori isolates in Taiwan in relation to consumption of antimicrobial agents. International journal of antimicrobial agents 34:162-165.
    13. Hu CT, Wu CC, Lin CY, Cheng CC, Su SC, Tseng YH, Lin NT. 2007. Resistance rate to antibiotics of Helicobacter pylori isolates in eastern Taiwan. Journal of gastroenterology and hepatology 22:720-723.
    14. Francesco VD, Zullo A, Hassan C, Giorgio F, Rosania R, Ierardi E. 2011. Mechanisms of Helicobacter pylori antibiotic resistance: An updated appraisal. World J Gastrointest Pathophysiol 2:35-41.
    15. Glupczynski Y. 1998. Antimicrobial resistance in Helicobacter pylori: a global overview. Acta gastro-enterologica Belgica 61:357-366.
    16. Kumala W, Rani A. 2006. Patterns of Helicobacter pylori isolate resistance to fluoroquinolones, amoxicillin, clarithromycin and metronidazoles. The Southeast Asian journal of tropical medicine and public health 37:970-974.
    17. Samuelson J. 1999. Why metronidazole is active against both bacteria and parasites. Antimicrobial agents and chemotherapy 43:1533-1541.
    18. Upcroft P, Upcroft JA. 2001. Drug targets and mechanisms of resistance in the anaerobic protozoa. Clinical microbiology reviews 14:150-164.
    19. Sisson G, Jeong JY, Goodwin A, Bryden L, Rossler N, Lim-Morrison S, Raudonikiene A, Berg DE, Hoffman PS. 2000. Metronidazole activation is mutagenic and causes DNA fragmentation in Helicobacter pylori and in Escherichia coli containing a cloned H. pylori RdxA(+) (Nitroreductase) gene. Journal of bacteriology 182:5091-5096.
    20. Leitsch D, Burgess AG, Dunn LA, Krauer KG, Tan K, Duchene M, Upcroft P, Eckmann L, Upcroft JA. 2011. Pyruvate:ferredoxin oxidoreductase and thioredoxin reductase are involved in 5-nitroimidazole activation while flavin metabolism is linked to 5-nitroimidazole resistance in Giardia lamblia. The Journal of antimicrobial chemotherapy 66:1756-1765.
    21. Muller J, Schildknecht P, Muller N. 2013. Metabolism of nitro drugs metronidazole and nitazoxanide in Giardia lamblia: characterization of a novel nitroreductase (GlNR2). The Journal of antimicrobial chemotherapy 68:1781-1789.
    22. Leitsch D, Kolarich D, Binder M, Stadlmann J, Altmann F, Duchene M. 2009. Trichomonas vaginalis: metronidazole and other nitroimidazole drugs are reduced by the flavin enzyme thioredoxin reductase and disrupt the cellular redox system. Implications for nitroimidazole toxicity and resistance. Molecular microbiology 72:518-536.
    23. Debets-Ossenkopp YJ, Namavar F, MacLaren DM. 1995. Effect of an acidic environment on the susceptibility of Helicobacter pylori to trospectomycin and other antimicrobial agents. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology 14:353-355.
    24. van Zanten SJ, Goldie J, Hollingsworth J, Silletti C, Richardson H, Hunt RH. 1992. Secretion of intravenously administered antibiotics in gastric juice: implications for management of Helicobacter pylori. Journal of clinical pathology 45:225-227.
    25. Sisson G, Goodwin A, Raudonikiene A, Hughes NJ, Mukhopadhyay AK, Berg DE, Hoffman PS. 2002. Enzymes associated with reductive activation and action of nitazoxanide, nitrofurans, and metronidazole in Helicobacter pylori. Antimicrobial agents and chemotherapy 46:2116-2123.
    26. Goodwin A, Kersulyte D, Sisson G, Veldhuyzen van Zanten SJ, Berg DE, Hoffman PS. 1998. Metronidazole resistance in Helicobacter pylori is due to null mutations in a gene (rdxA) that encodes an oxygen-insensitive NADPH nitroreductase. Molecular microbiology 28:383-393.
    27. Jeong JY, Mukhopadhyay AK, Akada JK, Dailidiene D, Hoffman PS, Berg DE. 2001. Roles of FrxA and RdxA nitroreductases of Helicobacter pylori in susceptibility and resistance to metronidazole. Journal of bacteriology 183:5155-5162.
    28. Jeong JY, Mukhopadhyay AK, Dailidiene D, Wang Y et al. 2000. Sequential inactivation of rdxA (HP0954) and frxA (HP0642) nitroreductase genes causes moderate and high-level metronidazole resistance in Helicobacter pylori. Journal of bacteriology 182:5082-5090.
    29. Moore JM, Salama NR. 2005. Mutational analysis of metronidazole resistance in Helicobacter pylori. Antimicrobial agents and chemotherapy 49:1236-1237.
    30. Albert TJ, Dailidiene D, Dailide G, Norton JE, Kalia A, Richmond TA, Molla M, Singh J, Green RD, Berg DE. 2005. Mutation discovery in bacterial genomes: metronidazole resistance in Helicobacter pylori. Nat Methods 2:951-953.
    31. Yang YJ, Wu JJ, Sheu BS, Kao AW, Huang AH. 2004. The rdxA gene plays a more major role than frxA gene mutation in high-level metronidazole resistance of Helicobacter pylori in Taiwan. Helicobacter 9:400-407.
    32. Gerrits MM, van der Wouden EJ, Bax DA, van Zwet AA, van Vliet AH, de Jong A, Kusters JG, Thijs JC, Kuipers EJ. 2004. Role of the rdxA and frxA genes in oxygen-dependent metronidazole resistance of Helicobacter pylori. Journal of medical microbiology 53:1123-1128.
    33. Kaakoush NO, Asencio C, Megraud F, Mendz GL. 2009. A redox basis for metronidazole resistance in Helicobacter pylori. Antimicrobial agents and chemotherapy 53:1884-1891.
    34. Mehrabadi JF, Sirous M, Daryani NE, Eshraghi S, Akbari B, Shirazi MH. 2011. Assessing the role of the RND efflux pump in metronidazole resistance of Helicobacter pylori by RT-PCR assay. Journal of infection in developing countries 5:88-93.
    35. Tsugawa H, Suzuki H, Muraoka H, Ikeda F, Hirata K, Matsuzaki J, Saito Y, Hibi T. 2011. Enhanced bacterial efflux system is the first step to the development of metronidazole resistance in Helicobacter pylori. Biochemical and biophysical research communications 404:656-660.
    36. van Amsterdam K, Bart A, van der Ende A. 2005. A Helicobacter pylori TolC efflux pump confers resistance to metronidazole. Antimicrobial agents and chemotherapy 49:1477-1482.
    37. Bryant DW, McCalla DR, Leeksma M, Laneuville P. 1981. Type I nitroreductases of Escherichia coli. Canadian journal of microbiology 27:81-86.
    38. Olekhnovich IN, Goodwin A, Hoffman PS. 2009. Characterization of the NAD(P)H oxidase and metronidazole reductase activities of the RdxA nitroreductase of Helicobacter pylori. The FEBS journal 276:3354-3364.
    39. Martinez-Julvez M, Rojas AL, Olekhnovich I, Espinosa Angarica V, Hoffman PS, Sancho J. 2012. Structure of RdxA--an oxygen-insensitive nitroreductase essential for metronidazole activation in Helicobacter pylori. The FEBS journal 279:4306-4317.
    40. Guttner Y, Windsor HM, Viiala CH, Dusci L, Marshall BJ. 2003. Nitazoxanide in treatment of Helicobacter pylori: a clinical and in vitro study. Antimicrobial agents and chemotherapy 47:3780-3783.
    41. Basu PP, Rayapudi K, Pacana T, Shah NJ, Krishnaswamy N, Flynn M. 2011. A randomized study comparing levofloxacin, omeprazole, nitazoxanide, and doxycycline versus triple therapy for the eradication of Helicobacter pylori. The American journal of gastroenterology 106:1970-1975.
    42. Hoffman PS, Sisson G, Croxen MA, Welch K, Harman WD, Cremades N, Morash MG. 2007. Antiparasitic drug nitazoxanide inhibits the pyruvate oxidoreductases of Helicobacter pylori, selected anaerobic bacteria and parasites, and Campylobacter jejuni. Antimicrobial agents and chemotherapy 51:868-876.
    43. Yamamoto Y, Hakki A, Friedman H, Okubo S, Shimamura T, Hoffman PS, Rossignol J. 1999. Nitazoxanide, a nitrothiazolide antiparasitic drug, is an anti-Helicobacter pylori agent with anti-vacuolating toxin activity. Chemotherapy 45:303-312.
    44. Megraud F, Occhialini A, Rossignol JF. 1998. Nitazoxanide, a potential drug for eradication of Helicobacter pylori with no cross-resistance to metronidazole. Antimicrobial agents and chemotherapy 42:2836-2840.
    45. Rimbara E, Fischbach LA, Graham DY. 2011. Optimal therapy for Helicobacter pylori infections. Nature reviews. Gastroenterology & hepatology 8:79-88.
    46. Liou JM, Chen CC, Chen M et al.. 2013. Sequential versus triple therapy for the first-line treatment of Helicobacter pylori: a multicentre, open-label, randomised trial. Lancet 381:205-213.
    47. Graham DY, Fischbach L. 2010. Helicobacter pylori treatment in the era of increasing antibiotic resistance. Gut 59:1143-1153.
    48. Gerrits MM, van Vliet AH, Kuipers EJ, Kusters JG. 2006. Helicobacter pylori and antimicrobial resistance: molecular mechanisms and clinical implications. The Lancet infectious diseases 6:699-709.
    49. Wickner S, Maurizi MR, Gottesman S. 1999. Posttranslational quality control: folding, refolding, and degrading proteins. Science 286:1888-1893.
    50. Bota DA, Davies KJ. 2002. Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol 4:674-680.
    51. Ngo JK, Pomatto LC, Davies KJ. 2013. Upregulation of the mitochondrial Lon Protease allows adaptation to acute oxidative stress but dysregulation is associated with chronic stress, disease, and aging. Redox biology 1:258-264.
    52. Petropoulos I, Friguet B. 2006. Maintenance of proteins and aging: the role of oxidized protein repair. Free Radic Res 40:1269-1276.
    53. Rotanova TV, Botos I, Melnikov EE, Rasulova F, Gustchina A, Maurizi MR, Wlodawer A. 2006. Slicing a protease: structural features of the ATP-dependent Lon proteases gleaned from investigations of isolated domains. Protein science 15:1815-1828.
    54. Park SC, Jia B, Yang JK, Van DL, Shao YG, Han SW, Jeon YJ, Chung CH, Cheong GW. 2006. Oligomeric structure of the ATP-dependent protease La (Lon) of Escherichia coli. Mol Cells 21:129-134.
    55. Vieux EF, Wohlever ML, Chen JZ, Sauer RT, Baker TA. 2013. Distinct quaternary structures of the AAA+ Lon protease control substrate degradation. Proc Natl Acad Sci U S A 110:E2002-2008.
    56. Wohlever ML, Baker TA, Sauer RT. 2014. Roles of the N domain of the AAA+ Lon protease in substrate recognition, allosteric regulation and chaperone activity. Molecular microbiology 91:66-78.
    57. Li M, Gustchina A, Rasulova FS, Melnikov EE, Maurizi MR, Rotanova TV, Dauter Z, Wlodawer A. 2010. Structure of the N-terminal fragment of Escherichia coli Lon protease. Acta Crystallogr D Biol Crystallogr 66:865-873.
    58. Hanson PI, Whiteheart SW. 2005. AAA+ proteins: have engine, will work. Nature reviews. Molecular cell biology 6:519-529.
    59. Licht S, Lee I. 2008. Resolving individual steps in the operation of ATP-dependent proteolytic molecular machines: from conformational changes to substrate translocation and processivity. Biochemistry 47:3595-3605.
    60. Cha SS, An YJ, Lee CR, Lee HS, Kim YG, Kim SJ, Kwon KK, De Donatis GM, Lee JH, Maurizi MR, Kang SG. 2010. Crystal structure of Lon protease: molecular architecture of gated entry to a sequestered degradation chamber. The EMBO journal 29:3520-3530.
    61. Van Melderen L, Gottesman S. 1999. Substrate sequestration by a proteolytically inactive Lon mutant. Proc Natl Acad Sci U S A 96:6064-6071.
    62. Botos I, Melnikov EE, Cherry S, Tropea JE, Khalatova AG, Rasulova F, Dauter Z, Maurizi MR, Rotanova TV, Wlodawer A, Gustchina A. 2004. The catalytic domain of Escherichia coli Lon protease has a unique fold and a Ser-Lys dyad in the active site. The Journal of biological chemistry 279:8140-8148.
    63. Im YJ, Na Y, Kang GB, Rho SH, Kim MK, Lee JH, Chung CH, Eom SH. 2004. The active site of a lon protease from Methanococcus jannaschii distinctly differs from the canonical catalytic Dyad of Lon proteases. J Biol Chem 279:53451-53457.
    64. Botos I, Melnikov EE, Cherry S, Kozlov S, Makhovskaya OV, Tropea JE, Gustchina A, Rotanova TV, Wlodawer A. 2005. Atomic-resolution crystal structure of the proteolytic domain of Archaeoglobus fulgidus lon reveals the conformational variability in the active sites of lon proteases. J Mol Biol 351:144-157.
    65. Charette MF, Henderson GW, Doane LL, Markovitz A. 1984. DNA-stimulated ATPase activity on the lon (CapR) protein. Journal of bacteriology 158:195-201.
    66. Nomura K, Kato J, Takiguchi N, Ohtake H, Kuroda A. 2004. Effects of inorganic polyphosphate on the proteolytic and DNA-binding activities of Lon in Escherichia coli. The Journal of biological chemistry 279:34406-34410.
    67. Lee AY, Hsu CH, Wu SH. 2004. Functional domains of Brevibacillus thermoruber lon protease for oligomerization and DNA binding: role of N-terminal and sensor and substrate discrimination domains. The Journal of biological chemistry 279:34903-34912.
    68. Lee AY, Tsay SS, Chen MY, Wu SH. 2004. Identification of a gene encoding Lon protease from Brevibacillus thermoruber WR-249 and biochemical characterization of its thermostable recombinant enzyme. European journal of biochemistry / FEBS 271:834-844.
    69. Lee AY, Chen YD, Chang YY, Lin YC, Chang CF, Huang SJ, Wu SH, Hsu CH. 2014. Structural basis for DNA-mediated allosteric regulation facilitated by the AAA+ module of Lon protease. Acta crystallographica. Section D, Biological crystallography 70:218-230.
    70. Tsilibaris V, Maenhaut-Michel G, Van Melderen L. 2006. Biological roles of the Lon ATP-dependent protease. Research in microbiology 157:701-713.
    71. Takaya A, Tabuchi F, Tsuchiya H, Isogai E, Yamamoto T. 2008. Negative regulation of quorum-sensing systems in Pseudomonas aeruginosa by ATP-dependent Lon protease. Journal of bacteriology 190:4181-4188.
    72. Maurizi MR, Trisler P, Gottesman S. 1985. Insertional mutagenesis of the lon gene in Escherichia coli: lon is dispensable. J Bacteriol 164:1124-1135.
    73. Gottesman S, Halpern E, Trisler P. 1981. Role of sulA and sulB in filamentation by lon mutants of Escherichia coli K-12. J Bacteriol 148:265-273.
    74. Aertsen A, Michiels CW. 2005. SulA-dependent hypersensitivity to high pressure and hyperfilamentation after high-pressure treatment of Escherichia coli lon mutants. Res Microbiol 156:233-237.
    75. Brazas MD, Breidenstein EB, Overhage J, Hancock RE. 2007. Role of lon, an ATP-dependent protease homolog, in resistance of Pseudomonas aeruginosa to ciprofloxacin. Antimicrobial agents and chemotherapy 51:4276-4283.
    76. Kuroda A, Nomura K, Ohtomo R, Kato J, Ikeda T, Takiguchi N, Ohtake H, Kornberg A. 2001. Role of inorganic polyphosphate in promoting ribosomal protein degradation by the Lon protease in E. coli. Science 293:705-708.
    77. Kuroda A, Nomura K, Takiguchi N, Kato J, Ohtake H. 2006. Inorganic polyphosphate stimulates lon-mediated proteolysis of nucleoid proteins in Escherichia coli. Cellular and molecular biology 52:23-29.
    78. Bode G, Mauch F, Ditschuneit H, Malfertheiner P. 1993. Identification of structures containing polyphosphate in Helicobacter pylori. Journal of general microbiology 139:3029-3033.
    79. Shirai M, Kakada J, Shibata K, Morshed MG, Matsushita T, Nakazawa T. 2000. Accumulation of polyphosphate granules in Helicobacter pylori cells under anaerobic conditions. Journal of medical microbiology 49:513-519.
    80. Nilsson HO, Blom J, Abu-Al-Soud W, Ljungh AA, Andersen LP, Wadstrom T. 2002. Effect of cold starvation, acid stress, and nutrients on metabolic activity of Helicobacter pylori. Applied and environmental microbiology 68:11-19.
    81. Yang ZX, Zhou YN, Yang Y, Jin DJ. 2010. Polyphosphate binds to the principal sigma factor of RNA polymerase during starvation response in Helicobacter pylori. Molecular microbiology 77:618-627.
    82. Tomb JF, White O, Kerlavage AR et al. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539-547.
    83. Choi YW, Park SA, Lee HW, Kim DS, Lee NG. 2008. Analysis of growth phase-dependent proteome profiles reveals differential regulation of mRNA and protein in Helicobacter pylori. Proteomics 8:2665-2675.
    84. Furano AV, Wittel FP. 1976. Syntheses of elongation factors Tu and G are under stringent control in Escherichia coli. J Biol Chem 251:898-901.
    85. Choi YW, Park SA, Lee HW, Lee NG. 2009. Alteration of growth-phase-dependent protein regulation by a fur mutation in Helicobacter pylori. FEMS Microbiol Lett 294:102-110.
    86. McAtee CP, Hoffman PS, Berg DE. 2001. Identification of differentially regulated proteins in metronidozole resistant Helicobacter pylori by proteome techniques. Proteomics 1:516-521.
    87. van Vliet AH, Wooldridge KG, Ketley JM. 1998. Iron-responsive gene regulation in a Campylobacter jejuni fur mutant. Journal of bacteriology 180:5291-5298.
    88. Chaves S, Gadanho M, Tenreiro R, Cabrita J. 1999. Assessment of metronidazole susceptibility in Helicobacter pylori: statistical validation and error rate analysis of breakpoints determined by the disk diffusion test. Journal of clinical microbiology 37:1628-1631.
    89. Gautom RK. 1997. Rapid pulsed-field gel electrophoresis protocol for typing of Escherichia coli O157:H7 and other gram-negative organisms in 1 day. Journal of clinical microbiology 35:2977-2980.
    90. Achbergerova L, Nahalka J. 2011. Polyphosphate--an ancient energy source and active metabolic regulator. Microbial cell factories 10:63.
    91. Westphal K, Langklotz S, Thomanek N, Narberhaus F. 2012. A Trapping Approach Reveals Novel Substrates and Physiological Functions of the Essential Protease FtsH in Escherichia coli. The Journal of biological chemistry 287:42962-42971.
    92. Bayot A, Gareil M, Rogowska-Wrzesinska A, Roepstorff P, Friguet B, Bulteau AL. 2010. Identification of novel oxidized protein substrates and physiological partners of the mitochondrial ATP-dependent Lon-like protease Pim1. The Journal of biological chemistry 285:11445-11457.
    93. Marsin S, Mathieu A, Kortulewski T, Guerois R, Radicella JP. 2008. Unveiling novel RecO distant orthologues involved in homologous recombination. PLoS genetics 4:e1000146.
    94. Olczak AA, Wang G, Maier RJ. 2005. Up-expression of NapA and other oxidative stress proteins is a compensatory response to loss of major Helicobacter pylori stress resistance factors. Free radical research 39:1173-1182.
    95. Hoffman PS, Goodwin A, Johnsen J, Magee K, Veldhuyzen van Zanten SJ. 1996. Metabolic activities of metronidazole-sensitive and -resistant strains of Helicobacter pylori: repression of pyruvate oxidoreductase and expression of isocitrate lyase activity correlate with resistance. Journal of bacteriology 178:4822-4829.
    96. Falkow S. 1988. Molecular Koch's postulates applied to microbial pathogenicity. Reviews of infectious diseases 10 Suppl 2:S274-276.
    97. Duman RE, Lowe J. 2010. Crystal structures of Bacillus subtilis Lon protease. Journal of molecular biology 401:653-670.
    98. Bottoms CA, Smith PE, Tanner JJ. 2002. A structurally conserved water molecule in Rossmann dinucleotide-binding domains. Protein science 11:2125-2137.
    99. Ayraud S, Janvier B, Labigne A, Ecobichon C, Burucoa C, Fauchere JL. 2005. Polyphosphate kinase: a new colonization factor of Helicobacter pylori. FEMS microbiology letters 243:45-50.
    100. Tan S, Fraley CD, Zhang M, Dailidiene D, Kornberg A, Berg DE. 2005. Diverse phenotypes resulting from polyphosphate kinase gene (ppk1) inactivation in different strains of Helicobacter pylori. Journal of bacteriology 187:7687-7695.
    101. Nicoloff H, Perreten V, McMurry LM, Levy SB. 2006. Role for tandem duplication and lon protease in AcrAB-TolC- dependent multiple antibiotic resistance (Mar) in an Escherichia coli mutant without mutations in marRAB or acrRAB. Journal of bacteriology 188:4413-4423.
    102. Nicoloff H, Andersson DI. 2013. Lon protease inactivation, or translocation of the lon gene, potentiate bacterial evolution to antibiotic resistance. Molecular microbiology 90:1233-1248.
    103. Nicoloff H, Perreten V, Levy SB. 2007. Increased genome instability in Escherichia coli lon mutants: relation to emergence of multiple-antibiotic-resistant (Mar) mutants caused by insertion sequence elements and large tandem genomic amplifications. Antimicrobial agents and chemotherapy 51:1293-1303.
    104. Jones KR, Cha JH, Merrell DS. 2008. Who's Winning the War? Molecular Mechanisms of Antibiotic Resistance in Helicobacter pylori. Curr Drug ther 3:190-203.
    105. Lesk AM. 1995. NAD-binding domains of dehydrogenases. Current opinion in structural biology 5:775-783.
    106. Loughlin MF, Arandhara V, Okolie C, Aldsworth TG, Jenks PJ. 2009. Helicobacter pylori mutants defective in the ClpP ATP-dependant protease and the chaperone ClpA display reduced macrophage and murine survival. Microbial pathogenesis 46:53-57.
    107. Kwon DH, Osato MS, Graham DY, El-Zaatari FA. 2000. Quantitative RT-PCR analysis of multiple genes encoding putative metronidazole nitroreductases from Helicobacter pylori. International journal of antimicrobial agents 15:31-36.
    108. Olekhnovich IN, Vitko S, Valliere M, Hoffman PS. 2013. Response to Metronidazole and Oxidative Stress is Mediated Through Homeostatic Regulator HsrA (HP1043) in Helicobacter pylori. Journal of bacteriology.
    109. van der Hulst RW, van der Ende A, Homan A, Roorda P, Dankert J, Tytgat GN. 1998. Influence of metronidazole resistance on efficacy of quadruple therapy for Helicobacter pylori eradication. Gut 42:166-169.
    110. Hughes NJ, Clayton CL, Chalk PA, Kelly DJ. 1998. Helicobacter pylori porCDAB and oorDABC genes encode distinct pyruvate:flavodoxin and 2-oxoglutarate:acceptor oxidoreductases which mediate electron transport to NADP. Journal of bacteriology 180:1119-1128.
    111. Wang G, Alamuri P, Maier RJ. 2006. The diverse antioxidant systems of Helicobacter pylori. Molecular microbiology 61:847-860.
    112. Breidenstein EB, Bains M, Hancock RE. 2012. Involvement of the lon protease in the SOS response triggered by ciprofloxacin in Pseudomonas aeruginosa PAO1. Antimicrobial agents and chemotherapy 56:2879-2887.
    113. Jeong-Won Park J-YS, Hyang-Ran Hwang, Hee-Jin Park et al. 2012. Proteomic Analysis of Thiol-active Proteins of Helicobacter pylori 26695. J Bacteriol Virol 42:13.
    114. Yang R-R. 2006. Molecular Cloning and Functional Characterization Of NAD(P)H:Flavin oxidoreductase From Helicobacter Pylori. Tsing Hau University, National digtal library of thesis and dissertations in Taiwan
    115. Kwon DH, El-Zaatari FA, Kato M, Osato MS, Reddy R, Yamaoka Y, Graham DY. 2000. Analysis of rdxA and involvement of additional genes encoding NAD(P)H flavin oxidoreductase (FrxA) and ferredoxin-like protein (FdxB) in metronidazole resistance of Helicobacter pylori. Antimicrobial agents and chemotherapy 44:2133-2142.
    116. Andersson DI, Hughes D. 2014. Microbiological effects of sublethal levels of antibiotics. Nature reviews. Microbiology 12:465-478.
    117. Chiou PY, Luo CH, Chang KC, Lin NT. 2013. Maintenance of the Cell Morphology by MinC in Helicobacter pylori. PloS one 8:e71208.
    118. Kwon DH, Kato M, El-Zaatari FA, Osato MS, Graham DY. 2000. Frame-shift mutations in NAD(P)H flavin oxidoreductase encoding gene (frxA) from metronidazole resistant Helicobacter pylori ATCC43504 and its involvement in metronidazole resistance. FEMS microbiology letters 188:197-202.
    119. Debets-Ossenkopp YJ, Pot RG, Van Westerloo DJ, Goodwin A, Vandenbroucke-Grauls CM, Berg DE, Hoffman PS, Kusters JG. 1999. Insertion of mini-IS605 and deletion of adjacent sequences in the nitroreductase (rdxA) gene cause metronidazole resistance in Helicobacter pylori NCTC11637. Antimicrobial agents and chemotherapy 43:2657-2662.
    120. Martinez-Julvez M, Rojas AL, Olekhnovich I, Angarica VE, Hoffman PS, Sancho J. 2012. Structure of RdxA - an oxygen-insensitive nitroreductase essential for metronidazole activation in Helicobacter pylori. The FEBS journal 279:4306-4317.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE