研究生: |
羅世奇 Luo, Shih-Chi |
---|---|
論文名稱: |
克雷博氏肺炎桿菌多黏菌素B抗藥性蛋白與反應調節蛋白的結構分析與交互作用之研究 Structural Basis and Interactions of Polymyxin B Resistance Protein D (PmrD) with the Response Regulator (PmrA) from Klebsiella pneumoniae |
指導教授: |
呂平江
Lyu, Ping-Chiang 陳金榜 Chen, Chinpan |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 109 |
中文關鍵詞: | 克雷博氏肺炎桿菌 、多黏菌素B抗藥性蛋白 、雙分子訊息傳遞系統 、核磁共振光譜 、蛋白質交互作用 、交叉飽和實驗 |
外文關鍵詞: | Klebsiella penumoniae, polymyxin B resistant protein, two-component signal-transduction system, NMR, protein protein interaction, cross-saturation experiments |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雙分子系統是細菌中最常用來感測外在環境訊號並傳遞到細胞內的主要裝置。PmrAB雙分子訊息傳遞系統主要用來感測外在環境例如低鎂離子與弱酸條件,接著在病原體內調控與脂多醣修飾及多黏菌素B的抗藥性相關基因。在沙門氏桿菌中PmrD小分子鹼性蛋白負責保護Phospho-PmrA蛋白上的磷酸根免於內生性或PmrB去磷酸脢的去磷酸化作用。PmrD是目前所知唯一能連結PmrA/PmrB與PhoP/PhoQ這兩套雙分子系統的鹼性小分子蛋白。首先,本研究發現克雷博氏肺炎桿菌內的PmrD重組蛋白剛開始同時具有氧化態與還原態的構造,但在兩星期內會在空氣中自動轉變成完全氧化態。原二色旋光光譜儀顯示這兩種構型的二級結構與Tm值有些微的不同。質譜跟核磁共振光譜分析確認在氧化態蛋白中的Cys17與Cys35會形成一對雙硫鍵。同時化學位移分析也顯示氧化態與還原態PmrD蛋白有很大改變,進一步顯示他們的結構差異性。仔細分析這兩種蛋白的二級結構發現主要構型差異處位於蛋白質C-端的□螺旋。PmrD蛋白同時具有氧化與還原態的特性之前未曾被發現,而體內多黏菌素B抗藥性測試則顯示在形成雙硫鍵處的Cys17與Cys35產生突變會造成抗藥性降低,表示他們與克雷博氏肺炎桿菌的抗性功能有相關。接著,我們解出與沙門氏桿菌功能相似的克雷博氏肺炎桿菌PmrD蛋白(KP-PmrD)結構,並與大腸桿菌PmrD蛋白比較,結構與骨架動力學數據結果顯示KP-PmrD的C端□螺旋較短且更具有可動性。為了進一步瞭解KP-PmrD與PmrA N端訊息接收區(PmrAN)之間的分子交互作用,我們使用小分子磷酸化模擬物BeF3-進行核磁共振與表面電漿共振的定性與定量分析。結果顯示在BeF3-存在下KP-PmrD會與PmrAN進行專一性反應(KD=1.74±0.81 □M)。當與BeF3-活化後的PmrAN結合時,化學位移擾動與交叉飽和實驗可定義出KP-PmrD中由□-桶狀結構loops 2,4,6上所組成的一塊連續氨基酸群(Trp3, Leu26, Met28, Asp50, Ala51, and Ile65)。最後,雖然許多反應調節蛋白的結構已經被解出,但關於該蛋白與PmrD連結蛋白的複合體結構仍不是很清楚,之前我們已經決定克雷博氏肺炎桿菌PmrD蛋白的結構及其與磷酸化PmrA N端訊息接收區(PmrAN)的辨識模式,這裡我們使用資料驅動分子嵌合程式HADDOCK與定點電子自旋標記方法提出一種作用模式,在該模式中PmrAN透過活性部位區和KP-PmrD發生作用,而它也是一般反應調節蛋白常用來與組胺酸激酶進行分子間蛋白質交互作用的區域。這些結果顯示,定點電子自旋標記方法可作為另種驗證由HADDOCK所得之KP-PmrD/PmrAN蛋白複合體結構之生物物理方式並提供蛋白質間之長距離結構資訊。本研究針對克雷博氏肺炎桿菌PmrAB雙分子系統中PmrD蛋白對於多黏菌素B的調控提供更深入的瞭解。且我們的結果應可對KP-PmrD蛋白與PmrAB雙分子系統中Phospho-PmrA的專一性反應提供以結構為基礎的洞見。
In bacteria, the two-component signal-transduction system is the most common system for sensing environmental signals and transducing the information into the cell. The PmrA-PmrB two-component signal transduction system, responsible for sensing external stimuli of low Mg2+ and mild acidic conditions, can control the genes involved in lipopolysaccharide (LPS) modification and polymyxin resistance in pathogens. The small basic protein PmrD, a polymyxin B resistance protein, is the only protein known to be able to connect PmrA/PmrB and PhoP/PhoQ two-component systems. First, we found that the recombinant PmrD of Klebsiella penumoniae (KP-PmrD) initially contains both oxidized and reduced forms, and the reduced form is nearly converted into the oxidized form within two weeks in the air. The CD spectra revealed the secondary structure and the melting temperature are somewhat different between the two forms. Both mass analysis and NMR data confirmed the formation of a disulfide bridge at Cys17 and Cys35 for the oxidized form. Dramatic chemical-shift changes between the two forms were observed, further revealing their structural difference. A detailed comparison of secondary structures between the two forms showed that the major conformational difference is located at C-terminal □-helix. The existence of both reduced and oxidized forms has not been previously reported for any PmrD, and in vivo polymyxin B susceptibility assay of the site-directed mutagenesis on KP-PmrD reveals that the two cysteine, which form a disulfide bridge between Cys17-Cys35, is functional relevant. Second, we provided the NMR solution structure of PmrD in Klebsiella pneumoniae (KP-PmrD), which showed similar in vitro phosphotransfer activity to Salmonella PmrD. Structural comparisons and backbone dynamics data revealed that the C-terminal □-helix of KP-PmrD is shorter and much more flexible. To further study the molecular interactions involved in KP-PmrD and the N-terminal receiver domain of PmrA (PmrAN), we performed quantitative and qualitative SPR as well as NMR analyses both in the absence and presence of the phosphoryl analog beryllofluoride (BeF3-). The results demonstrated that KP-PmrD participates in specific interactions (KD = 1.74 ± 0.81 □M) with the PmrAN in the presence of BeF3-. Chemical shift perturbations and cross-saturation experiments defined a cluster of residues (Trp3, Leu26, Met28, Asp50, Ala51, and Ile65) forming a contiguous patch near loops 2, 4, and 6 of the □-barrel upon binding with the BeF3--activated PmrAN. Third, while several structures of receiver domain of response regulators have been solved, structures of regulatory domain in complex with its connector protein have remained elusive. We used the data-driven docking method HADDOCK and site-directed spin labeling approaches to proposed an interaction mode in which the N-terminal receiver domain of PmrA (PmrAN) interacts with KP-PmrD through the active site pockets, which is widely used by response regulatory domains for intermolecular protein/protein interactions with the histidine kinase. The results demonstrate that site-directed spin labeling could provide an independent biophysical method to confirm the complex model from HADDOCK and validate long-range distance information between corresponding regions of KP-PmrD/PmrAN complex structure. This study furthers the understanding of KP-PmrD polymyxin B resistance regulation in the PmrAB TCS and our results should provide insights into the structural basis of KP-PmrD for specific interaction with the phospho-PmrA in the PmrAB two-component system.
References
Aguirre, A., S. Lejona, E.G. Vescovi, F.C. Soncini, 2000. Phosphorylated PmrA interacts with the promoter region of ugd in Salmonella enterica serovar typhimurium. J Bacteriol 182, 3874-6.
Anglister, J., S. Grzesiek, H. Ren, C.B. Klee, A. Bax, 1993. Isotope-edited multidimensional NMR of calcineurin B in the presence of the non-deuterated detergent CHAPS. J Biomol NMR 3, 121-6.
Asensio, A., A. Oliver, P. Gonzalez-Diego, F. Baquero, J.C. Perez-Diaz, P. Ros, J. Cobo, M. Palacios, D. Lasheras, R. Canton, 2000. Outbreak of a multiresistant Klebsiella pneumoniae strain in an intensive care unit: antibiotic use as risk factor for colonization and infection. Clin Infect Dis 30, 55-60.
Bent, C.J., N.W. Isaacs, T.J. Mitchell, A. Riboldi-Tunnicliffe, 2004. Crystal Structure of the Response Regulator 02 Receiver Domain, the Essential YycF Two-Component System of Streptococcus pneumoniae in both Complexed and Native States. Journal of Bacteriology 186, 2872-2879.
Birck, C., Y. Chen, F.M. Hulett, J.P. Samama, 2003. The crystal structure of the phosphorylation domain in PhoP reveals a functional tandem association mediated by an asymmetric interface. Journal of Bacteriology 185, 254-261.
Blanco, A.G., M. Sola, F.X. Gomis-Ruth, M. Coll, 2002. Tandem DNA Recognition by PhoB, a two-component signal transduction transcriptional activator. Structure 10, 701-713.
Bruce, A.J., A.B. Richard, 1994. NMR View: A computer program for the visualization and analysis of NMR data. Journal of Biomolecular NMR V4, 603-614.
Brunger, A.T., P.D. Adams, G.M. Clore, W.L. DeLano, P. Gros, R.W. Grosse-Kunstleve, J.S. Jiang, J. Kuszewski, M. Nilges, N.S. Pannu, R.J. Read, L.M. Rice, T. Simonson, G.L. Warren, 1998. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54, 905-21.
Buckler, D.R., Y. Zhou, A.M. Stock, 2002. Evidence of intradomain and interdomain flexibility in an OmpR/PhoB Homolog from Thermotoga maritima. Structure 10, 153-164.
Campos, M.A., M.A. Vargas, V. Regueiro, C.M. Llompart, S. Alberti, J.A. Bengoechea, 2004. Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun 72, 7107-14.
Casino, P., V. Rubio, A. Marina, 2009. Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction. Cell 139, 325-36.
Chang, S.-C., C.-T. Fang, P.-R. Hsueh, Y.-C. Chen, K.-T. Luh, 2000. Klebsiella pneumoniae isolates causing liver abscess in Taiwan. Diagnostic Microbiology and Infectious Disease 37, 279-284.
Cho, H., W. Wang, R. Kim, H. Yokota, S. Damo, S.H. Kim, D. Wemmer, S. Kustu, D. Yan, 2001a. BeF(3)(-) acts as a phosphate analog in proteins phosphorylated on aspartate: structure of a BeF(3)(-) complex with phosphoserine phosphatase. Proc Natl Acad Sci U S A 98, 8525-30.
Cho, H.S., J.G. Pelton, D. Yan, S. Kustu, D.E. Wemmer, 2001b. Phosphoaspartates in bacterial signal transduction. Current Opinion in Structural Biology 11, 679-684.
Chou, H.C., C.Z. Lee, L.C. Ma, C.T. Fang, S.C. Chang, J.T. Wang, 2004. Isolation of a chromosomal region of Klebsiella pneumoniae associated with allantoin metabolism and liver infection. Infect Immun 72, 3783-92.
Collaborative, 1994. The CCP4 suite: programs for protein crystallography. Acta Crystallographica Section D 50, 760-763.
Delaglio, F., S. Grzesiek, G.W. Vuister, G. Zhu, J. Pfeifer, A. Bax, 1995. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6, 277-93.
Dominguez, C., R. Boelens, A.M.J.J. Bonvin, 2003. HADDOCK: A Protein−Protein Docking Approach Based on Biochemical or Biophysical Information. Journal of the American Chemical Society 125, 1731-1737.
Eguchi, Y., R. Utsumi, 2005. A novel mechanism for connecting bacterial two-component signal-transduction systems. Trends Biochem Sci 30, 70-2.
Evans, P., 2006. Scaling and assessment of data quality. Acta Crystallographica Section D 62, 72-82.
Francis, N.R., P.M. Wolanin, J.B. Stock, D.J. Derosier, D.R. Thomas, 2004. Three-dimensional structure and organization of a receptor/signaling complex. Proc Natl Acad Sci U S A 101, 17480-5.
Fu, W., F. Yang, X. Kang, X. Zhang, Y. Li, B. Xia, C. Jin, 2007. First structure of the polymyxin resistance proteins. Biochem Biophys Res Commun 361, 1033-7.
Gabriel, C., D. Frank, B. Ad, 1999. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. Journal of Biomolecular NMR V13, 289-302.
Gao, R., A. Stock, 2009. Biological Insights from Structures of Two-Component Proteins. Annual Review of Microbiology 63, 133-154.
Goddard, T.D., and Kneller, D. G., 2001. SPARKY 3.
Gouet, P., E. Courcelle, D.I. Stuart, F. Metoz, 1999. ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15, 305-8.
Groisman, E.A., 2001. The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol 183, 1835-42.
Groisman, E.A., J. Kayser, F.C. Soncini, 1997. Regulation of polymyxin resistance and adaptation to low-Mg2+ environments. J Bacteriol 179, 7040-5.
Gunn, J.S., 2008. The Salmonella PmrAB regulon: lipopolysaccharide modifications, antimicrobial peptide resistance and more. Trends Microbiol 16, 284-90.
Harlocker, S.L., L. Bergstrom, M. Inouye, 1995. Tandem binding of six OmpR proteins to the ompF upstream regulatory sequence of Escherichia coli. Journal of Biological Chemistry 270, 26849-26856.
Helander, I.M., Y. Kato, I. Kilpelainen, R. Kostiainen, B. Lindner, K. Nummila, T. Sugiyama, T. Yokochi, 1996. Characterization of lipopolysaccharides of polymyxin-resistant and polymyxin-sensitive Klebsiella pneumoniae O3. Eur J Biochem 237, 272-8.
Hoch, J.A.a.S., T.J. eds, 1995. Two-Component Signal Trasduction. ASM Press.
Huang, H., J. Milojevic, G. Melacini, 2008. Analysis and optimization of saturation transfer difference NMR experiments designed to map early self-association events in amyloidogenic peptides. J Phys Chem B 112, 5795-802.
Ivanova, E., H. Lu, 2008. Allosteric and electrostatic protein-protein interactions regulate the assembly of the heterohexameric Tim9-Tim10 complex. J Mol Biol 379, 609-16.
Kato, A., E.A. Groisman, 2004a. Connecting two-component regulatory systems by a protein that protects a response regulator from dephosphorylation by its cognate sensor. Genes Dev 18, 2302-13.
Kato, A., E.A. Groisman, 2004b. Connecting two-component regulatory systems by a protein that protects a response regulator from dephosphorylation by its cognate sensor. Genes and Development 18, 2302-2313.
Kato, A., A.Y. Mitrophanov, E.A. Groisman, 2007. A connector of two-component regulatory systems promotes signal amplification and persistence of expression. Proc Natl Acad Sci U S A 104, 12063-8.
Kay, L.E., 1995. Pulsed field gradient multi-dimensional NMR methods for the study of protein structure and dynamics in solution. Prog Biophys Mol Biol 63, 277-99.
Keen, N.T., S. Tamaki, D. Kobayashi, D. Trollinger, 1988. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70, 191-7.
Keskin, O., A. Gursoy, B. Ma, R. Nussinov, 2008. Principles of protein-protein interactions: what are the preferred ways for proteins to interact? Chem Rev 108, 1225-44.
Ko, W.C., D.L. Paterson, A.J. Sagnimeni, D.S. Hansen, A. Von Gottberg, S. Mohapatra, J.M. Casellas, H. Goossens, L. Mulazimoglu, G. Trenholme, K.P. Klugman, J.G. McCormack, V.L. Yu, 2002. Community-acquired Klebsiella pneumoniae bacteremia: global differences in clinical patterns. Emerg Infect Dis 8, 160-6.
Kox, L.F., M.M. Wosten, E.A. Groisman, 2000a. A small protein that mediates the activation of a two-component system by another two-component system. Embo J 19, 1861-72.
Kox, L.F.F., M.M.S.M. Wosten, E.A. Groisman, 2000b. A small protein that mediates the activation of a two-component system by another two-component system. EMBO Journal 19, 1861-1872.
Lai, Y.C., H.L. Peng, H.Y. Chang, 2003. RmpA2, an activator of capsule biosynthesis in Klebsiella pneumoniae CG43, regulates K2 cps gene expression at the transcriptional level. J Bacteriol 185, 788-800.
Luo, S.C., Y.C. Lou, H.Y. Cheng, Y.R. Pan, H.L. Peng, C. Chen, 2010a. Solution structure and phospho-PmrA recognition mode of PmrD from Klebsiella pneumoniae. J Struct Biol 172, 319-30.
Luo, S.C., Y.C. Lou, H.Y. Cheng, Y.R. Pan, H.L. Peng, C. Chen, 2010b. Solution structure and phospho-PmrA recognition mode of PmrD from Klebsiella pneumoniae. J Struct Biol.
Marchal, K., S. De Keersmaecker, P. Monsieurs, N. van Boxel, K. Lemmens, G. Thijs, J. Vanderleyden, B. De Moor, 2004. In silico identification and experimental validation of PmrAB targets in Salmonella typhimurium by regulatory motif detection. Genome Biol 5, R9.
Marintchev, A., D. Frueh, G. Wagner, 2007. NMR methods for studying protein-protein interactions involved in translation initiation. Methods Enzymol 430, 283-331.
McRee, D.E., 1999. XtalView Xfit - A versatile program for manipulating atomic coordinates and electron density. Journal of Structural Biology 125, 156-165.
Mitrophanov, A.Y., E.A. Groisman, 2008. Signal integration in bacterial two-component regulatory systems. Genes Dev 22, 2601-11.
Murshudov, G.N., A.A. Vagin, E.J. Dodson, 1997. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53, 240-55.
Nishino, K., F.F. Hsu, J. Turk, M.J. Cromie, M.M. Wosten, E.A. Groisman, 2006. Identification of the lipopolysaccharide modifications controlled by the Salmonella PmrA/PmrB system mediating resistance to Fe(III) and Al(III). Mol Microbiol 61, 645-54.
Otwinowski, Z., W. Minor, 1997. [20] Processing of X-ray diffraction data collected in oscillation mode, p. 307-326, in: Charles W. Carter, Jr., (Ed.), Methods in Enzymology, Academic Press, Vol. Volume 276, pp. 307-326.
Perez, J.C., E.A. Groisman, 2007. Acid pH activation of the PmrA/PmrB two-component regulatory system of Salmonella enterica. Mol Microbiol 63, 283-93.
Perraud, A.L., V. Weiss, R. Gross, 1999. Signalling pathways in two-component phosphorelay systems. Trends Microbiol 7, 115-20.
Podschun, R., U. Ullmann, 1998. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11, 589-603.
Prince, S.E., K.A. Dominger, B.A. Cunha, N.C. Klein, 1997. Klebsiella pneumoniae pneumonia. Heart Lung 26, 413-7.
Reichmann, D., O. Rahat, M. Cohen, H. Neuvirth, G. Schreiber, 2007. The molecular architecture of protein-protein binding sites. Curr Opin Struct Biol 17, 67-76.
Robinson, V.L., D.R. Buckler, A.M. Stock, 2000. A tale of two components: a novel kinase and a regulatory switch. Nat Struct Biol 7, 626-33.
Rogov, V.V., F. Bernhard, F. Lohr, V. Dotsch, 2004. Solution structure of the Escherichia coli YojN histidine-phosphotransferase domain and its interaction with cognate phosphoryl receiver domains. J Mol Biol 343, 1035-48.
Rogov, V.V., N.Y. Rogova, F. Bernhard, A. Koglin, F. Lohr, V. Dotsch, 2006. A new structural domain in the Escherichia coli RcsC hybrid sensor kinase connects histidine kinase and phosphoreceiver domains. J Mol Biol 364, 68-79.
Rogov, V.V., K. Schmoe, F. Lohr, N.Y. Rogova, F. Bernhard, V. Dotsch, 2008. Modulation of the Rcs-mediated signal transfer by conformational flexibility. Biochem Soc Trans 36, 1427-32.
Roland, K.L., L.E. Martin, C.R. Esther, J.K. Spitznagel, 1993. Spontaneous pmrA mutants of Salmonella typhimurium LT2 define a new two-component regulatory system with a possible role in virulence. J Bacteriol 175, 4154-64.
Roman, A.L., J.A.C. Rullmann, W.M. Malcolm, K. Robert, M.T. Janet, 1996. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR V8, 477-486.
Salzmann, M., G. Wider, K. Pervushin, H. Senn, K. Wuthrich, 1999. TROSY-type Triple-Resonance Experiments for Sequential NMR Assignments of Large Proteins. Journal of the American Chemical Society 121, 844-848.
Sambrook, J., E. F. Fritsch, and T. Maniatis, 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Habor Laboratory, Cold Spring Harbor, N.Y.
Stock, A.M., V.L. Robinson, P.N. Goudreau, 2000a. Two-component signal transduction. Annu Rev Biochem 69, 183-215.
Stock, A.M., V.L. Robinson, P.N. Goudreau, 2000b. TWO-COMPONENT SIGNAL TRANSDUCTION. Annual Review of Biochemistry 69, 183-215.
Takahashi, H., T. Nakanishi, K. Kami, Y. Arata, I. Shimada, 2000. A novel NMR method for determining the interfaces of large protein-protein complexes. Nat Struct Biol 7, 220-3.
Talbot, G.H., J. Bradley, J.E. Edwards, Jr., D. Gilbert, M. Scheld, J.G. Bartlett, 2006. Bad bugs need drugs: an update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. Clin Infect Dis 42, 657-68.
Tamayo, R., A.M. Prouty, J.S. Gunn, 2005a. Identification and functional analysis of Salmonella enterica serovar Typhimurium PmrA-regulated genes. FEMS Immunol Med Microbiol 43, 249-58.
Tamayo, R., B. Choudhury, A. Septer, M. Merighi, R. Carlson, J.S. Gunn, 2005b. Identification of cptA, a PmrA-regulated locus required for phosphoethanolamine modification of the Salmonella enterica serovar typhimurium lipopolysaccharide core. J Bacteriol 187, 3391-9.
Tatsis, V.A., I.G. Tsoulos, C.S. Krinas, C. Alexopoulos, A. Stavrakoudis, 2009. Insights into the structure of the PmrD protein with molecular dynamics simulations. Int J Biol Macromol 44, 393-9.
Terwilliger, T., 2000. Maximum-likelihood density modification. Acta Crystallographica Section D 56, 965-972.
Thompson, J.D., D.G. Higgins, T.J. Gibson, 1994. Improved sensitivity of profile searches through the use of sequence weights and gap excision. Comput Appl Biosci 10, 19-29.
Toro-Roman, A., T.R. Mack, A.M. Stock, 2005. Structural Analysis and Solution Studies of the Activated Regulatory Domain of the Response Regulator ArcA: A Symmetric Dimer Mediated by the [alpha]4-[beta]5-[alpha]5 Face. Journal of Molecular Biology 349, 11-26.
Volz, K., 1993. Structural conservation in the CheY superfamily. Biochemistry 32, 11741-11753.
Wang, J.H., Y.C. Liu, S.S. Lee, M.Y. Yen, Y.S. Chen, S.R. Wann, H.H. Lin, 1998. Primary liver abscess due to Klebsiella pneumoniae in Taiwan. Clin Infect Dis 26, 1434-8.
Weiss, M.S., 2001. Global indicators of X-ray data quality. Journal of Applied Crystallography 34, 130-135.
West, A.H., A.M. Stock, 2001a. Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci 26, 369-76.
West, A.H., A.M. Stock, 2001b. Histidine kinases and response regulator proteins in two-component signaling systems. Trends in Biochemical Sciences 26, 369-376.
Wishart, D.S., B.D. Sykes, 1994. The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4, 171-80.
Wosten, M.M., L.F. Kox, S. Chamnongpol, F.C. Soncini, E.A. Groisman, 2000. A signal transduction system that responds to extracellular iron. Cell 103, 113-25.
Wurgler-Murphy, S.M., H. Saito, 1997. Two-component signal transducers and MAPK cascades. Trends Biochem Sci 22, 172-6.
Yamada, S., H. Sugimoto, M. Kobayashi, A. Ohno, H. Nakamura, Y. Shiro, 2009. Structure of PAS-linked histidine kinase and the response regulator complex. Structure 17, 1333-44.
Yan, D., H.S. Cho, C.A. Hastings, M.M. Igo, S.Y. Lee, J.G. Pelton, V. Stewart, D.E. Wemmer, S. Kustu, 1999a. Beryllofluoride mimics phosphorylation of NtrC and other bacterial response regulators. Proceedings of the National Academy of Sciences of the United States of America 96, 14789-14794.
Yan, D., H.S. Cho, C.A. Hastings, M.M. Igo, S.Y. Lee, J.G. Pelton, V. Stewart, D.E. Wemmer, S. Kustu, 1999b. Beryllofluoride mimics phosphorylation of NtrC and other bacterial response regulators. Proc Natl Acad Sci U S A 96, 14789-94.
Zapf, J., U. Sen, Madhusudan, J.A. Hoch, K.I. Varughese, 2000. A transient interaction between two phosphorelay proteins trapped in a crystal lattice reveals the mechanism of molecular recognition and phosphotransfer in signal transduction. Structure 8, 851-62.
Zhao, R., E.J. Collins, R.B. Bourret, R.E. Silversmith, 2002. Structure and catalytic mechanism of the E. coli chemotaxis phosphatase CheZ. Nat Struct Mol Biol 9, 570-575.
Zhou, Z., A.A. Ribeiro, S. Lin, R.J. Cotter, S.I. Miller, C.R. Raetz, 2001. Lipid A modifications in polymyxin-resistant Salmonella typhimurium: PMRA-dependent 4-amino-4-deoxy-L-arabinose, and phosphoethanolamine incorporation. J Biol Chem 276, 43111-21.