研究生: |
蘇柏睿 Su, Po-Jui |
---|---|
論文名稱: |
硫化鋅鎘三元奈米線之合成、鑑定與能隙可調變性之研究 Synthesis, Characterization and Band Gap Engineering of Ternary ZnxCd1-xS (0≦x≦1) Alloyed Nanowires |
指導教授: |
陳力俊
Chen, Lih-Juann |
口試委員: |
吳文偉
鄭晃忠 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2014 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 68 |
中文關鍵詞: | 三元奈米線 、能隙調變 、光學性質調變 、硫化鋅鎘 |
外文關鍵詞: | ternary alloyed nanowires, band gap engineering, optical tunability, zinc cadmium sulfide |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,許多研究團隊都致力於三元合金半導體奈米線之研究,藉由調變三元合金之能隙以改變半導體之結構與光性質,使三元合金半導體比二元半導體蘊藏著更多變的、更特殊的特徵;光電性質的可調變性使得三元合金半導體奈米線被廣泛的運用在可變波長式奈米雷射、光檢測器、發光二極體及光伏元件上。硫化鎘與硫化鋅皆為相當重要且被廣為使用在光電元件上的二六族半導體材料,將硫化鎘及硫化鋅混合形成三元合金更可使其使用光譜範圍擴大。
在此研究中,利用單一步驟之氣-液-固相成長反應,成長出硫化鋅鎘三元半導體奈米線,藉由控制沉積區的溫度,可以在單一試片上生長出各種不同合金成分之硫化鋅鎘奈米線,從X-ray 繞射分析儀中可以得到所有的奈米線沒有相分離且皆為纖鋅礦結構,在光致發光量測中可以得到硫化鋅鎘奈米線的能隙可從富硫化鎘的綠光端 (508 nm) 調變至富硫化鋅的紫外光端 (360 nm),此代表藉由控制奈米線的沉積溫度,我們可以自由控制硫化鋅鎘三元合金的成分、結構以及能隙。
A complete composition tunability of ternary ZnxCd1-xS alloyed nanowires on a single substrate has been achieved by vapor–liquid–solid (VLS) growth. The compositions of the as-grown nanowires along the substrate can be modulated from pure ZnS to pure CdS by simply controlling the local temperature. Photoluminescence spectra showed that the band edge emissions of these alloyed nanowires with the peak wavelength can be gradually tuned from green (508 nm) at the CdS-rich end to near UV (360 nm) at the ZnS-rich end.
Alloyed semiconductor nanowires have drawn much interest in recent years because they can offer more unique properties than binary systems by band-gap engineering. Band gap is one of the most important parameters of semiconductor materials and determines its electronic and optical properties. Ternary alloyed nanowires offer a wide range of band gap tunability, provide broad applications in optoelectronics, including wavelength-tunable lasers, multispectral photodetectors, light emitting diodes (LEDs) and photovoltaics (PV).
CdS and ZnS with band gaps of 2.42 eV and 3.7 eV at 300 K, respectively, are the promising II-VI semiconductor materials due to their wide range of optoelectronic application. Alloyed ZnxCd1-xS nanowires are expected to provide band gap tunability. Recently, there have been a few reports on the synthesis of ternary ZnxCd1-xS alloyed nanowires by solvothermal synthesis or laser ablation deposition. However, it is still a challenge to achieve a complete composition variation of ZnxCd1-xS nanowires on a single substrate in a one-step synthesis. Herein, we report a route for the preparation of ternary ZnxCd1-xS alloyed nanowires via a one-step vapor-liquid-solid (VLS) growth. Crystalline nanowires with full-range composition tuning were achieved by controlling the substrate temperature. Band gap tuning of these nanowires allows emissions from green (508 nm) to near UV (360 nm) region.
References
1. N. Taniguchi, “On the Basic Concept of ‘Nano-Technology,” at International Conference of Product Engineers. Tokyo, Japan: Japan Society of Precision Engineering. (1974).
2. R. P. Feynman, “There’s Plenty of Room at the Bottom,” at the Annual Meeting of the American Physical Society on December 29th at the California Institute of Technology (1959).
3. A. P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science 271, pp. 933-937 (1996).
4. S. E. Thompson and S. Parthasarathy, “Moore's Law: the Future of Si
Microelectronics,” Materials Today 9, pp. 20-25 (2006).
5. J. H. Hah, S. Mayya, M. Hata, Y. K. Jang, H.-W. Kim, M. Ryoo, S. G. Woo, H. K. Cho and J. T. Moon, “Converging Lithography by Combination of Electrostatic Layer-by-Layer Self-Assembly and 193 nm Photolithography: Top-Down Meets Bottom-Up,” Journal of Vacuum Science & Technology B 24, pp. 2209-2213 (2006).
6. K. C. Chen, W. W. Wu, C. N. Liao, L. J. Chen, and K. N. Tu, “Observation of Atomic Diffusion at Twin-Modified Grain Boundaries in copper,” Science 321, pp. 1066-1069 (2008).
7. Z. H. Zhong, D. L. Wang, Y. Cui, M. W. Bockrath, and C. M. Lieber, “Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems,” Science 302, pp. 1377-1379 (2003).
8. L. J. Chen, “Metal Silicides: An Integral Part of Microelectronics,” JOM 57(6), pp. 24-30 (2005).
9. G. Schmid, and F. C. Lifeng, “Metal Clusters and Colloids,” Adv. Mater. 10, pp. 515-526 (1998).
10. P. Yang, Y. Wu, and R. Fan, “Inorganic Semiconductor Nanowires,” Inter. J. Nano. 1, pp. 1-39 (2002).
11. Y. Wu, H. Yan, M. Huang, B. Messer, J. H. Song, and P. Yang, “Inorganic Semiconductor Nanowires: Rational Growth, Assembly, and Novel Properties,” Chemistry, Euro. J. 8, pp. 1260-1268 (2002).
12. M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, and K. Hiruma, “Effect of One Monolayer of Surface Gold Atoms on the Epitaxial Growth of InAs Nanowhiskers,” Appl. Phys. Lett. 61, pp. 2051-2053 (1992).
13. Y. Wu, and P. Yang, “Germanium Nanowire Growth via Simple Vapor Transport,” Chem. Mater. 12, pp. 605-607 (2000).
14. A. M. Morales, and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,” Science 279, pp. 59 208-211 (1998).
15. T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, “Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth,” Science 270, pp. 1791-1794 (1995).
16. R. S. Wagner, and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4, pp. 89-90 (1964).
17. J. Westwater, D. P. Gosain, S. Tomiya, and S. Usui, “Growth of Silicon Nanowires via Gold/Silane Vapor-liquid-Solid Reaction,” J. Vac. Sci. Technol. B 15, pp. 554-557 (1997).
18. Y. W. Wang, L. D. Zhang, C. H. Liang, G. Z. Wang, and X. S. Peng, “Catalytic Growth and Photoluminescence Properties of Semiconductor Single-Crystal ZnS Nanowires,” Chem. Phys. Lett. 357, pp. 314-318 (2002).
19. C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen “Catalytic Growth and characterization of Gallium Nitride Nanowires,” J. Am. Chem. Soc. 123, pp. 2791-2798 (2001).
20. Zheng Wei Pan, Zu Rong Dai, and Zhong Lin Wang, “Nanobelts of Semiconducting Oxides,” Science 291, pp. 1947-1949 (2001).
21. T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, “Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors - an Analogy to Vapor-Liquid-Solid Growth,” Science 270, pp. 1791-1794 (1995).
22. M. J. Bierman and S. Jin, “Potential Applications of Hierarchical
Branching Nanowires in Solar Energy Conversion,” Energy &
Environmental Science 2, pp. 1050-1059 (2009).
23. T. L. Li, Y. L. Lee, and H. Teng, “CuInS2 Quantum Dots Coated with CdS as High-Performance Sensitizers for TiO2 Electrodes in Photoelectrochemical Cells,” Journal of Materials Chemistry 21, pp. 5089-5098 (2011).
24. Y. Wu, C. Wadia, W. Ma, B. Sadtler, and A. P. Alivisatos, “Synthesis and Photovoltaic Application of Copper(I) Sulfide Nanocrystals,” Nano Letters 8, pp. 2551-2555 (2008).
25. C. H. Lai, M. Y. Lu, and L. J. Chen, “Metal Sulfide Nanostructures: Synthesis, Properties and Applications in Energy Conversion and Storage,” Journal of Materials Chemistry 22, pp. 19-30 (2012).
26.D. Wang, C. Hao, W. Zheng, Q. Peng, T. Wang, Z. Liao, D. Yu and Y. Li, “Ultralong Single-crystalline Ag2S Nanowires: Promising Candidates for Photoswitches and Room-temperature Oxygen Sensors,” Advanced Materials 20, pp. 2628-2632 (2008).
27. J. Jie, W. Zhang, I. Bello, C. S. Lee, and S. T. Lee, “One-dimensional II-VI Nanostructures: Synthesis, Properties and Optoelectronic Applications,” Nano Today 5, pp. 313-336 (2010).
28. T. Zhai, X. Fang, L. Li, Y. Bando, and D. Golberg, “One-dimensional CdS Nanostructures: Synthesis, Properties, and Applications,” Nanoscale 2, pp. 168-187 (2010).
29. X. L. Yu, Y. Wang, R. K. Zheng, J. F. Qu, H. L. W. Chan, and C. B. Cao, “Synthesis and Magnetic Characterizations of Three-Dimensional Iron Sulfide Nanostructures,” Crystal Growth & Design 9, pp. 1293-1296 (2009).
30. J. Wang, S. H. Ng, G. X. Wang, J. Chen, L. Zhao, Y. Chen, H.K. Liu, “Synthesis and Characterization of Nanosize Cobalt Sulfide for Rechargeable Lithium Batteries,” Journal of Power Sources 159, pp. 287-290 (2006).
31. Z. P. Liu, D. Xu, J. B. Liang, J. M. Shen, S. Y. Zhang, and Y. T. Qian, “Growth of Cu2S Ultrathin Nanowires in a Binary Surfactant Solvent,” Journal of Physical Chemistry B 109, pp. 10699-10704 (2005).
32.F. Cao, R. Liu, L. Zhou, S. Song, Y. Lei, W. Shi, F. Zhao and H. Zhang, “One-Pot Synthesis of Flowerlike Ni7S6 and Its Application in Selective Hydrogenation of Chloronitrobenzene,” Journal of Materials Chemistry 20, pp. 1078-1085 (2010).
33. D. Moore and Z. L. Wang, “Growth of Anisotropic One-Dimensional ZnS Nanostructures,” Journal of Materials Chemistry 16, pp. 3898-3905 (2006).
34. J. P. Ge and Y. D. Li, “Controllable CVD Route to CoS and MnS Single-Crystal Nanowires,” Chemical Communications 19, pp. 2498-2499 (2003).
35. Z. W. Wang, L. L. Daemen, Y. S. Zhao, C. S. Zha, R. T. Downs, X. D. Wang, Z. L. Wang and R. J. Hemley, “Morphology-Tuned Wurtzite-Type ZnS nanobelts,“ Nature Materials 4, pp. 922-927 (2005).
36. T. Yamamoto, S. Kishimoto, and S. Iida, “Control of Valence States for ZnS by Triple-Codoping Method,” Phys. B 308-310, pp. 916-919 (2001).
37. P. Calandra, M. Goffredi, and V. T. Liveri, “Study of the Growth of ZnS Nanoparticles in Water/AOT/n-Heptane Microemulsions by UV Absorption Spectroscopy,” Colloids Surf. A 160, pp. 9-13(1999).
38. M. Bredol, and J. Merichi, “ZnS Precipitation: Morphology Control,” J. Mater. Sci. 33, pp. 471-476 (1998).
39. C. Wu, J. Jie, L. Wang, Y. Yu, Q. Peng, X. Zhang, J. Cai, H. Guo, D. Wu and Y. Jiang, “Chlorine-Doped n-Type CdS Nanowires with Enhanced Photoconductivity,” Nanotechnology 21, pp. 505203-505210 (2010).
40. R. Banerjee, R. Jayakrishnan, and P. Ayyub, “Effect of the Size-Induced Structural Transformation on the Band Gap in CdS Nanoparticles,” Journal of Physics-Condensed Matter, 12, pp. 10647-10654 (2000).
41. H. Li, X. Wang, J. Xu, Q. Zhang, Y. Bando, D. Golberg, Y. Ma and T. Zhai, “One-Dimensional CdS Nanostructures: A Promising Candidate for Optoelectronics,” Advanced Materials 25, pp. 3017-
3037 (2013).
42. W.J. Danaher, L.E. Lyons and G.C. Morris, “Some Properties of Thin Films of Chemically Deposited Cadmium Sulphide,” Solar Energy Materials 12, pp. 137–148 (1985)
43. X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-Nanowire Electrically Driven Lasers,” Nature 421, pp. 241-245 (2003).
44. Y. Huang, X. F. Duan, and C. M. Lieber, “Nanowires for Integrated Multicolor Nanophotonics,” Small 1, pp. 142-147 (2005).
45. F. Capasso, “Band-gap Engineering- From Physics and Materials to New Semiconductor Devices,” Science 235, pp. 172-176 (1987).
46. V. A. Fedorov, V. A. Ganshin, and Y. N. Korkishko, “Solid-State Phase Diagram of the Zinc Sulfide-Cadmium Sulfide System,” Materials Research Bulletin 28, pp. 59-66 (1993).
47. X. H. Zhong, Y. Y. Feng, W. Knoll, and M. Y. Han, “Alloyed ZnxCd1-xS Nanocrystals with Highly Narrow Luminescence Spectral Width,” Journal of the American Chemical Society 125, pp. 13559-13563 (2003).
48. M. Li, J. Jiang, and L. Guo, “Synthesis, Characterization, and Photoelectrochemical Study of Cd1-xZnxS Solid Solution thin films Deposited by Spray Pyrolysis for Water Splitting,” International
Journal of Hydrogen Energy 35, pp. 7036-7042 (2010).
49. W. Li, D. Li, Z. Chen, H. Huang, M. Sun, Y. He and X. Fu, “High-Efficient Degradation of Dyes by ZnxCd1-xS Solid Solutions Under Visible Light Irradiation,” Journal of Physical Chemistry C 112, pp.14943-14947 (2008).
50. S. Biswas, S. Kar, S. Santra, Y. Jompol, M. Arif, and S. I. Khondaker,“Solvothermal Synthesis of High-Aspect Ratio Alloy Semiconductor Nanowires: Cd1-xZnxS, a Case Study,” Journal of Physical Chemistry C 113, pp. 3617-3624 (2009).
51. Y. K. Liu, J. A. Zapien, Y. Y. Shan, C. Y. Geng, C. S. Lee, and S. T.Lee, “Wavelength-Controlled Lasing in ZnxCd1-xS Single-Crystal Nanoribbons,” Advanced Materials 17, pp. 1372-1377 (2005).
52. M.H. Hung, C.Y. Wang, J. Tang, C.C. Lin, T.C. Hou, X. Jiang, K.L. Wang, and L.J. Chen, “Free-Standing and Single-Crystalline Fe1-xMnxSi Nanowires with Room-Temperature Ferromagnetism and Excellent Magnetic Response,” ACS Nano 6, pp. 4884-4891 (2012).
53. M. Afsal, C.Y. Wang, L.W. Chu, H. Ouyang, and L.J. Chen, “Highly Sensitive Metal-insulator-semiconductor Photodetectors Based on ZnO/SiO2 Core-shell Nanowires,” Journal of Materials Chemistry 22, pp. 8420-8425 (2012).
54. C.Y. Chen, K.Y. Cheng, Y.C. Chang, L.J. Chen, W.L. Fung, C.S.Chang, and L.J. Chou, “Liquid-Solid Process for Growing Gold Nanowires on an Indium Tin Oxide Substrate as Excellent Field Emitters,” Journal of Physical Chemistry C 116, pp. 12824-12828 (2012).
55. Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, and J. He, “Visible Light Driven type II Heterostructures and Their Enhanced Photocatalysis Properties: a Review,” Nanoscale 5, pp. 8326-8339 (2013).
56. X. J. Zhuang, C. Z. Ning, and A. L. Pan, “Composition and Bandgap-Graded Semiconductor Alloy Nanowires,” Advanced Materials 24, pp. 13-33 (2012).
57. R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire Photonics,” Nature Photonics 3, pp. 569-576 (2009).
58. J. D. Huang, J. Y. Liu, and K. L. Han, “Hybrid functionals studies of structural and electronic properties of ZnxCd((1-x))S and (ZnxCd1-x)(SexS1-x) solid solution photocatalysts,” International Journal of Hydrogen Energy 37, pp. 17870-17881 (2012).
59. A. R. Denton and N. W. Ashcroft, “Vegard's Law,” Physical Review A 43, pp. 3161-3164 (1991).
60. C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, “First-Order Raman Effect in Wurtzite-Type Crystals,” Physical Review 181, pp. 1351-1363 (1969).
61. H. M. Fan, X. F. Fan, Z. H. Ni, Z. X. Shen, Y. P. Feng, and B. S. Zou, “Orientation-Dependent Raman Spectroscopy of Single Wurtzite CdS Nanowires,” Journal of Physical Chemistry C 112, pp. 1865-1870 (2008).
62. Y. C. Cheng, C. Q. Jin, F. Gao, X. L. Wu, W. Zhong, S. H. Li and P. K. Chu, “Raman Scattering Study of Zinc Blende and Wurtzite ZnS,” Journal of Applied Physics 106, pp. 123505 (2009).
63. S. Kar, S. Biswas, and S. Chaudhuri, “Catalytic Growth and Photoluminescence Properties of ZnS nanowires,” Nanotechnology 16, pp. 737-740 (2005).
64. J. C. Wu, J. Zheng, C. L. Zacherl, P. Wu, Z. K. Liu, and R. Xu, “Hybrid Functionals Study of Band Bowing, Band Edges and Electronic Structures of Cd1-xZnxS Solid Solution,” Journal of Physical Chemistry C 115, pp. 19741-19748 (2011).
65.H. J. Xiang, S. H. Wei, Juarez L. F. Da Silva, and J. Li, “Strain Relaxation and Band-Gap Tunability in Ternary InxGa1−xN nanowires,” Physical Review B 78, pp. 193301 (2008)
66. C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. Wang, “Nanowire Photodetectors,” Journal of Nanoscience and Nanotechnology 10, pp. 1430-1449 (2010).
67. R. Huang, J. Zhang, F. Wei, L. Shi, T. Kong, and G. Cheng, “Ultrahigh Responsivity of Ternary Sb-Bi-Se Nanowire Photodetectors,” Advanced Functional Materials 24, pp. 3581-3586 (2014).
68. H. Liu, J. Lu, H. F. Teoh, D. Li, Y. P. Feng, S. H. Tang, C. H. Sow and X. Zhang, “Defect Engineering in CdSxSe1-x Nanobelts: An Insight into Carrier Relaxation Dynamics via Optical Pump-Terahertz Probe Spectroscopy,” Journal of Physical Chemistry C 116, pp. 26036-26042 (2012).
69. J. Lu, H. Liu, S. X. Lim, S. H. Tang, C. H. Sow, and X. Zhang, “Transient Photoconductivity of Ternary CdSSe Nanobelts As Measured by Time-Resolved Terahertz Spectroscopy,” Journal of Physical Chemistry C 117, pp. 12379-12384 (2013).