研究生: |
周培鈞 Chou, Pei Chun |
---|---|
論文名稱: |
以化學氣相沉積法增強陶瓷支架之機械性質 Enhancing Mechanical Properties of Ceramic Scaffolds by Vapor Deposition Polymerization |
指導教授: |
陳柏宇
Chen, Po-Yu |
口試委員: |
段與興
王子威 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 113 |
中文關鍵詞: | 骨 、冷凍鑄造法 、仿生材料 、氣相沉積聚合法 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
具有三圍結構及生物相容性的多孔陶瓷材料被視為骨修復或替代的理想材料。孔洞彼此間的高度相連性為成骨細胞提供了大表面積,用以加速骨頭的自我修復機制,且陶瓷支架最終會被吸收,不會長期停留於人體。然而,傳統的製程無法精確控制孔洞的大小及形狀。陶瓷支架機械性質上的限制,使其無法被應用於承受高荷重之部位。本研究我們製備兩種不同類型的陶瓷支架來仿造多孔骨的結構及機械性質,一種為天然、去蛋白化牛多孔骨,另一種則利用冷凍鑄造法合成的多孔的氧化鋁陶瓷支架。掃描式電子顯微鏡(SEM)以及超高解析度斷層掃描儀(μ-CT)成果證實利用上述兩種方法,均能製備出具有三維結構的多孔陶瓷。利用氣相沉積聚合法進一步地將陶瓷支架鍍上高分子層來增強其機械性質,並以壓縮測試法測量。結果顯示,鍍有高分子的支架在機械性質的表現上具有顯著的改善,與天然多孔骨相當。藉由調控不同的實驗參數(例如冷卻速度、單分子溶液的量、嫁接和退火),可控制並改良其微結構與機械性質。本研究亦探討此高分子/陶瓷複合材料之韌化機制,包含裂縫撓曲偏折、未斷裂區域橋接以及微裂縫生成等。期望此研究成果能進一步地應用於生醫領域,或發展兼具超輕量化以多功能之仿生複合材料。
1. Burg KJL, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials 2000;21;2347-59
2. Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: State of the art and future trends. Macromolecular Bioscience 2004;4;743-65
3. Nandi SK, Roy S, Mukherjee P, Kundo B, De DK, Basu D. Orthopaedic applications of bone graft & graft substitutes: a review. Indian J Med Res 2010;132;15-30
4. Klokkevold PR, Jovanovic SA. "Advanced Implant Surgery and Bone Grafting Techniques". In Newman, Takei, Carranza. Carranza's Clinical Periodontology (9th ed.). Philadelphia: W.B. Saunders. 2002;907–8.
5. Moore WR, Graves SE, Bain GI, Synthetic bone graft substitutes, Surgery 2001;71;354-61
6. Mundy GR, Regulation of bone formation by bone morphogenetic proteins and other growth factors, Clin Orthop Relat Res. 324;1996;24-8
7. Sykaras N, Opperman LA, Bone morphogenetic proteins (BMPs), Journal of Oral Science 45;2003;57-73
8. Currey JD,”Bones: structure and mechanics”. Princeton, NJ: Princeton University Press; 2002
9. Sepulveda P, Binner JGP, Processing of cellular ceramics by foaming and in situ polymerisation of organic monomers, J. Eur. Ceram. Soc., 19;1999;2059-66
10. A. Herzog, R. Klingner, U. Vogt, T. Graule, Wood-derived porous SiC ceramics by sol infiltration and carbothermal reduction, J. Am. Ceram. Soc. 87;2004;784-793
11. Sieber H, Hoffmann C, Kaindl A, Greil P, Biomorphic cellular ceramics, Adv. Eng. Mater 2;2000;105-9
12. Sun B, Fan T, Zhang D, Porous TiC ceramics derived from wood template, J. Porous Mater. 9;2002;275-7
13. Cao J, Rambo CR, Sieber H, Preparation of porous Al2O3-Ceramics by biotemplating of wood, J. Porous Mater. 11;2004;163-72
14. Deville S, Freeze-casting of porous ceramics- A review of current achievements and issues, Advanced Engineering Materials 10;2008;155-69
15. Deville S, Saiz Eduardo S, Tomsia AP, Freeze casting of hydroxyapatite scaffolds for bone tissue engineering, Biomaterials 2006;27;5480-9
16. Launey ME, Munch E, Alsem DH, Barth HB, Saiz E, Tomsia AP, Ritchie RO, Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Mater. 57;2009;2919-32.
17. Deville S, Saiz E, Nalla RK, Tomsia AP, Freezing as a path to build complex composites, Science 311;2006;515-18
18. Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO, Tough, Bio-Inspired Hybrid Materials, Science, 322, 1516-22 (2008).
19. Porter MM, Yeh M, Strawson J, Goehring T, Lujan S, Siripasopsotorn P, Meyers MA, McKittrick J, Magnetic freeze casting inspired by nature, Mat. Sci. Eng. A-Struct., 556;2012;741-50
20. Riblett BW, Francis NL, Wheatley MA, Wegst UGK, Ice-templated scaffolds with microridged pores direct DRG neurite growth, Adv. Funct. Mater., 22;2012;4920–4923
21. Lee S, Porter M, Wasko S, Lau G, Chen PY, Novitskaya EE, Tomsia AP, Almutairi A, Meyers MA, McKittrick J, Potential Bone Replacement Materials Prepared by Two Methods, MRS Proceedings 1418;2012
22. Martinez-Vazquez FJ, Perera FH, Miranda P, Pajares A, Guiberteau F, Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration, Acta Biomater., 6;2010;4361-68
23. Miao X, Lim WK, Huang X, Chen PY, Preparation and characterization of interpenetrating phased TCP/HA/PLGA composites, Mater. Lett., 59;2005;4000-05
24. Pezzotti G, Asmus SMF, Ferroni LP, Mikki S, In situ polymerization into porous ceramics: a novel route to tough biomimetic materials. J. Mater. Sci.-Mater. M, 13;2002;783-87
25. Porter MM, Lee S, Tanadchangsaeng N, Jaremko MJ, Yu J, Meyers M, McKittrick J, Porous Hydroxyapatite-Polyhydroxybutyrate Composites Fabricated by a Novel Method Via Centrifugation. In XII International Congress and Exposition on Experimental and Applied Mechanics. Costa Mesa of Experimental Mechanics 2012
26. Elkasabi Y, Chen HY, Lahann J, Multipotent polymer coatings based on chemical vapor deposition copolymerization. Adv. Mater., 18;2006;1521-26
27. McKittrick J, Chen PY, Tombolato T, Novitskaya E, Trim MW, Hirata GA, Olevsky EA, Horstemeyer MF, Meyers MA, Energy absorbent natural materials and bio-inspired design strategies: A review, Materials Science and Engineering C 30;2010;331–42
28. Weiner S, Wagner HD, The material bone: Structure mechanical function relations, ANNUAL REVIEW OF MATERIALS SCIENCE 28;1998;271-298
29. Novitskaya E, Chen PY, Lee S, Castro-Ceseña A, Hirata G, Lubarda VA, McKittrick J, Anisotropy in the compressive mechanical properties of bovine cortical bone- Mineral and protein constituents compared with untreated bone, Acta Biomaterialia 7 ;2011; 3170–77
30. Currey JD, Bone Strength: What are We Trying to Measure, Calcif Tissue Int 68;2001;205–10
31. Currey JD, Biocomposites: micromechanics of biological hard tissues, Current Opinion in Solid State & Materials Science 1;1996;440-445
32. Currey JD, The effect of porosity and mineral content on the Young's modulus of elasticity of compact bone, Journal of Biomechanics 21;1988;131-9
33. Zioupos P, Currey JD, Changes in the stiffness, strength, and toughness of human cortical bone with age, Bone 22;1998;57-66
34. Currey JD, The mechanical consequences of variation in the mineral content of bone, Journal of Biomechanics 2;1969;1-11
35. Reily DT, Burstein AH, Mechanical Properties of Cortical Bone and Joint Surgery American A 56;1974;1001-22
36. Reily DT, Burstein AH, Frankel VH, The elastic modulus for bone, Journal of Biomechanics 7;1974;271-5
37. Reily DT, Burstein AH, Martens M, Aging of Bone Tissue- Mechanical Properties, Journal of Bone and Joint Surgery American A 58;1976;82-86
38. Reily DT, Burstein AH, The elastic and ultimate properties of compact bone tissue, Journal of Biomechanics 8;1975;393-405
39. Burstein AH, Currey JD, Frankel VH, Reily DT, The ultimate properties of bone tissue: The effects of yielding, Journal of Biomechanics 5;1972;35-44
40. Landis WJ, Hodgens KJ, Arena J, Song MJ, Mcewen BF, Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography, Microscopy Research and Technique 33;1996;192-202
41. Martin RB, Boardman DL, The effects of collagen fiber orientation, porosity, density, and mineralization on bovine cortical bone bending properties, J. Biomechanics 26;1993;1047-54
42. Martin RB, Lau ST, Mathews PV, Gibson VA, Stover SM, Collagen fiber organization is related to mechanical properties and remodeling in equine bone. A comparison of two methods, J. Biomechanics 29;1996;1515 21
43. Burstein AH, Zika JM, Heiple KG, Klein L, Contribution of collagen and mineral to the elastic-plastic properties of bone, J Bone Joint Surg Am 57;1975;956–61
44. Hasegawa K, Turner CH, Burr DB, Contribution of collagen and mineral to the elastic anisotropy of bone, Calcif. Tissue Int. 55;1994;381–6.
45. Skedros JG, Sorenson SM, Takano Y, Turner CH, Dissociation of mineral and collagen orientations may differentially adapt compact bone for regional loading environments: results from acoustic velocity measurements in deer calcanei, Bone 39;2006;143–51
46. Iyo T, Maki Y, Sasaki N, Nakata M, Anisotropic viscoelastic properties of cortical bone, J. Biomech 37;2004;1433–7
47. Chen PY, Toroian D, Price PA, McKittrick J, Minerals form a continuum phase in mature cancellous bone, Calc. Tiss Int. 88;2011;351–61
48. Chen PY, McKittrick J, Compressive mechanical properties of demineralized and deproteinated cancellous bone, J. Mech. Behav. Biol. Mater. 4;2011;961-73
49. Novitskaya E, Chen PY, Lee S, Castro-Ceseña A, Hirata G, Lubarda VA, McKittrick J, Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents, Acta Biomaterialia 7 ;2011;3170–7
50. Rho J, Tsui T, Pharr O, Elastic Properties of human cortical and trabecular bone measured by nanoindentation, Biomaterials 18;1997;1325-30
51. Hoffler CE, Guo XE, Zysset PK, Moore KE, Goldstein SA, Evaluation of bone microstructure properties: effect of testing conditions, depth, repetition, time delay and displacement rate, Proceedings of the Bioengineering Conference of the ASME 1997
52. Rho JY, Zioupos P, Currey JD, Pharr GM, Variation in the individual thick lamellar properties within osteons by nanoindentation, Bone 25;1999;295-300
53. Faingold A, Cohen SR, Wagner HD, Nanoindentation of osteonal bone lamellae, J. Mech. Biomed. Mater. 9;2012;198-206
54. Zysset PK, Guo XE, Hoffler CE, Moore KE, Goldstein SA, Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur
55. Martin A, A finite element model for mineral transport into newly formed bone, Trans. Orthop. Res. Soc. 18;1993;80
56. Launey ME, Buehler MJ, Ritchie RO, On the Mechanistic Origins of Toughness in Bone, Annual Review of Materials Research 40;2010;25-53
57. Porter MM, McKittrick J, Meyers MA, Biomimetic Materials by Freeze Casting, JOM 2013;25;720-7
58. Zhang H, Hussain I, Brust M, Butler MF, Rannard SP, Coopers AI, Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles, Nat. Mater. 4;2005;787-93
59. Deville S, Maire E, Bernard-Granger G, Lasalle A, Bogner A, Gauthier C, Leloup J, Guizard C, Metastable and unstable cellular solidification of colloidal suspensions, Nat. Mater.8;2009;966 -72
60. Deville S, Maire E, Lasalle A, Bogner A, Gauthier C, Leloup J, Guizard C, In Situ X-Ray Radiography and Tomography Observations of the Solidification of Aqueous Alumina Particle Suspensions-Part I: Initial Instants, J. Am. Ceram. Soc. 92;2009;2489-96
61. Deville S, Maire E, Lasalle A, Bogner A, Gauthier C, Leloup J, Guizard C, In Situ X-Ray Radiography and Tomography Observations of the Solidification of Aqueous Alumina Particles Suspensions. Part II: Steady State, J. Am. Ceram. Soc. 92;2009;2497-503
62. Wegst UGK, Schecter M, Donius AE, Hunger PM, Biomaterials by freeze casting, Phil. Trans. R. Soc. A 368;2012;2497-121
63. Körber C., Rau G., Cosman MD, Cravalho, EG, Interaction of particles and a moving ice–liquid interface. J. Cryst. Growth 72;1985;649–662
64. Uhlmann DR, Chalmers B, Jackson, KA, Interaction between particles and a solid–liquid interface. J. Appl. Phys. 35;1964;2986–2993
65. Bolling GF, Cisse J, A theory for the interaction of particles with a solidifying front, J. Cryst. Growth 10;1971;56–61
66. Stefanescu DM, Dhindaw BK, Kacar AS, Moitra A., A behavior of ceramic particles at the solid–liquid metal interface in metal matrix composites. Metall. Trans. A 19;1988;2847–55
67. Lipp G, Körber C, On the engulfment of spherical particles by a moving ice–liquid interface. J. Cryst. Growth 130;1993;475–89
68. Deville S, Saiz E, Tomsia AP, Ice-templated porous alumina structures. Acta Mater.55;2007;1965–74
69. Bobertag O, Feist K, Fischer HW, Defrosting of hydrosols, Berichte Der Chemischen Gesekkschaf 41;1908;3675-9
70. Lottermoser A, Über das Ausfrieren von Hydrosolen. Ber. Dtsch. Chem. Ges. 41;1908;3976–3979
71. Maxwell W, Gurnick AR, Francisco AC, Preliminary investigation of the freezecasting method for forming refractory powders. NACA Research Memorandum, Lewis Flight Propulsion Laboratory 1954
72. Lu H, Qu Z, Zhou YC, Preparation and mechanical properties of dense polycrystalline hydroxyapatite through freeze- drying, J. Mater. Sci.: Mater. In Medicine 9;1998;583-7
73. Sofie SW, Dogan F, Freeze casting of aqueous alumina slurries with glycerol, J. Am. Ceram. Soc., 84;2001;1459-64
74. Fukasawa T, Deng ZY, Ando M, Ohji T, Goto Y, Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. J. Mater. Sci. 36;2001;2523–7
75. Fukasawa T, Deng ZY, Ando M, Ohji T, Kanzaki S, Synthesis of porous silicon nitride with unidirectionally aligned channels using freeze-drying process. J. Am. Ceram. Soc.85;2002;2151–5
76. Yoon BH, Park CS, Kim HE, Koh YH, In-situ fabrication of porous hydroxyapatite (HA) scaffolds with dense shells by freezing HA/camphene slurry Mater. Lett. 62;2008;1700-3
77. Lee EJ, Koh YH, Yoon BH, Kim HE, Kim HW, Highly porous hydroxyapatite bioceramics with interconnected pore channels using camphene-based freeze casting, Mater. Lett. 61;2007;2270
78. Moritz T, Richter HJ, Ice-mould freeze casting of porous ceramic components J. Eur. Ceram. Soc. 27;2007;4595-4601
79. Moon JW, Hwang HJ, Awano M, Maeda K, Preparation of NiO-YSZ tubular support with radially aligned pore channels, Mater.Lett. 57;2003;1428
80. Koh YH, Sun JJ, Kim HE, Freeze casting of porous Ni-YSZ cermets, Mater. Lett. 61;2007;1283-7
81. Sofie SW, Fabrication of functionally graded and aligned porosity in thin ceramic substrates with the novel freeze-tape-casting process, J. Am. Ceram. Soc. 90;2007;2024-31
82. Ren L, Zeng YP, Jiang D, Fabrication of gradient pore TiO2 sheets by a novel freeze-tape-casting process, J. Am. Ceram. Soc. 90;2007;3001-4
83. Lee SH, Jun SH, Kim HE, Koh YH, Fabrication of porous PZT-PZN piezoelectric ceramics with high hydrostatic figure of merits using camphene-based freeze casting, J. Am. Ceram. Soc. 90;2007;2807-13
84. Deville S, Miranda P, Saiz E, Tomsia AP, Int. Conf. Manufact. Sci. Eng. Ypsilanti, MI, 2006
85. Deng ZY, Fernandes HR, Ventura JM, Kannan S, Ferreira JMF, Nano-TiO2-coated unidirectional porous glass structure prepared by freeze drying and solution infiltration, J. Am. Ceram. Soc. 90;2007;1265-8
86. Nishihara H, Mukai SR, Yamashita D, Tamon H, Ordered macroporous silica by ice templating Chem. Mater. 17;2005;683-9
87. Hwang HJ, Kim DY, Moon JW, Fabrication of porous clay materials with aligned pore structures by freeze-drying, Key Eng. Mater 510–511;2006;906-9
88. Moon JW, Hwang HJ, Awano M, Maeda K, Kanzaki S, Preparation of dense thin-flm solid electrolyte on novel porous structure with parallel pore channel, J. Ceram. Soc. Jpn. 10;2002;479-84
89. Tang J, Chen Y, Wang H, Liu H, Fan Q, Preparation of oriented porous silicon carbide bodies by freeze-casting process, Key Eng. Mater 280–283;2005;1287-90
90. Chino Y, Dunand DC, Directionally freeze-cast titanium foam with aligned, elongated pores, Acta Materialia 56;2006;105-13
91. Yook SW, Yoon BH, Kim HE, Koh YH, Kim YS, Porous titanium (Ti) scaffolds by freezing TiH2/camphene slurries, Materials Letters 62;2008;4506-8
92. Li JC, Dunand DC, Mechanical properties of directionally freeze-cast titanium foams, Acta Materialia 59;2011;146-58
93. Driscoll D, Weisenstein AJ, Sofie SW, Electrical and flexural anisotropy in freeze tape cast stainless steel porous substrates, Materials Letters 65;2011;3433-5
94. Schoof H, Bruns L, Fischer A, Heschel I, Rau G, Dendritic ice morphology in unidirectionally solidified collagen suspensions. J. Cryst. Growth 209;2000;122–9
95. Schoof H, Apel J, Heschel I, Rau G, Control of pore structure and size in freeze-dried collagen sponges. J. Biomed. Mater. Res. 58;2001;352–7
96. Kuberka M, von Heimburg D, Schoof H, Heschel I, Rau G, Magnification of the pore size in biodegradable collagen sponges. Int. J. Artif. Organs 25;2002;67–73
97. Olevsky E, Lin Y, Bio-Inspired micro-channeled hydroxyapatite components by sequential freeze drying and pressureless spark-plasma sintering, symposium 23;PACRIM 2013
98. Zhang YM, Hu LY, Han JC, Preparation of a Dense/Porous BiLayered Ceramic by Applying an Electric Field During Freeze Casting, J. Am. Ceram. Soc. 92;2009;1874-6
99. Forrester JS, Goodshaw HJ, Kisi EH, Suaning GJ and Zobec JS, Effect of Mechanical Milling on the Sintering Behaviour of Alumina, J. Aust. Ceram. Soc. 44;2008;47-52
100. Yu PC, Yen FS, On the High Pure Alumina Composite powder for Sintering at 1400oC: A Preliminary Investigation, Key Engineering Materials 313;2006;59-62
101. Jang J, Lim B. Facile fabrication of inorganic-polymer core-shell nanostructures by a one-step vapor deposition polymerization. Angew. Chem. Int. Ed. 2003;42;5600-5603
102. Gaddis CS, Sandhage KH. Freestanding microscale 3D polymeric structures with biologically-derived shapes and nanoscale features. Journal of Materials Research. 2004;19:2541-5.
103. Gordon R, Losic D, Tiffany MA, Nagy SS, Sterrenburg FAS. The Glass Menagerie: diatoms for novel applications in nanotechnology. Trends in Biotechnology. 2009;27:116-27.