簡易檢索 / 詳目顯示

研究生: 林勁甫
Lin, Jin-Fu
論文名稱: 通過系統生物學和深度學習方法研究老化過程機制並設計多分子藥物以緩解人體皮膚老化
Aging Progression Mechanism Investigation and Potential Multiple-Molecule Drugs Design for Mitigating Human Skin Aging via Systems Biology and Deep Learning Methods
指導教授: 陳博現
Chen, Bor-Sen
口試委員: 黃宣誠
Huang, Suan-cheng
阮雪芬
Juan, Hsueh-Fen
汪宏達
Wang, Horng-Dar
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 66
中文關鍵詞: 皮膚老化氧化應激老化進展機制全基因組基因與表關遺傳網路系統藥物設計藥物目標交互作用模型深度類神經網路學習多分子藥物
外文關鍵詞: skin aging, oxidative stress, aging progression mechanism, genome-wide genetic and epigenetic network (GWGEN), systems medicine design, drug-target interaction (DTI) model, deep neural network (DNN) learning, multiple-molecule drug
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 皮膚衰老受到許多生物信號傳導途徑、微環境因素和表關遺傳調控的影響。隨著用以防止或逆轉皮膚老化的化妝品和藥物的需求逐年增加,設計減緩皮膚老化的多分子藥物是必不可少的。在這項研究中,我們開發了基於系統生物學和深度學習方法的系統醫學設計策略。在系統生物學方法中,我們通過大數據挖掘以建構候選的全基因組基因和表關遺傳網路(GWGEN),並通過系統識別和模型順序檢測方法以及相應的真實的微陣列數據,為每個衰老階段確定真實的GWGEN。從真實的GWGENs提取的核心信號通路闡明了衰老的進展機制。同時鑑定了造成細胞功能障礙的重要的生物標誌物AIFM1, AKT1, CAT, IGF1R 和LMNA在中期皮膚老化,和IL6, MMP9, YAP1和NGF在老年皮膚老化。基於預先訓練的藥物標靶相互作用(DTI)深度學習(DNN)模型,我們可以獲得選定的重要生物標記物的潛在候選藥物。通過連通性圖(CMap)的調節能力與預測的LD50,提出了兩種多分子藥物組合來改善皮膚衰老,也就是tamoxifen, raloxifene和colforsin用於治療中期皮膚,cimetidine, omeprazole和resveratrol用於治療晚期皮膚。運用系統生物學,真實時間概況微陣列數據,大數據挖掘,DTI模型和DNN方法,基於機制和少量副作用的系統藥物設計可以節省長期的人類皮膚臨床試驗。


    Skin aging is affected by various biological signaling pathways, microenvironment factors and epigenetic regulations. With the increased requirement of cosmetics and pharmaceuticals to prevent or reverse skin aging year by year, designing multiple-molecule drugs for mitigating skin aging is indispensable. In this study, we developed strategies for systems medicine design based on systems biology and deep learning methods. In systems biology method, we constructed candidate genome-wide genetic and epigenetic network (GWGEN) via big databases mining and identified real GWGEN for each aging stage through system identification and model order detection method with the real microarray data of different stages of skin aging. The core signaling pathways extracted from the real GWGENs shed the light on the aging progression mechanisms. The significant biomarkers AIFM1, AKT1, CAT, IGF1R and LMNA for middle-stage skin aging and IL6, MMP9, YAP1 and NGF for elder-stage skin aging resulting in cellular dysfunctions were identified. By the pre-trained drug target interaction (DTI) model based on deep neural network (DNN), we could obtain potential candidate molecular drugs for the selected significant biomarkers. Filtered by the regulation ability via connectivity map (Cmap) and toxicity threshold with LD50 value, two combination multiple-molecule drugs for ameliorating skin aging were proposed for middle and elder-stage aging skin, respectively, i.e., tamoxifen, raloxifene and colforsin for middle-stage skin aging and cimetidine, omeprazole and resveratrol for elder-stage skin aging. Applying systems biology, real time-prolife microarray data, big data mining, DTI model and DNN method, the proposed systems drug design based on mechanism and less side effect for mitigating skin aging could save long period human skin clinical experiments.

    Chapter 1. Introduction 1 Chapter 2. Results 6 2.1. Extracting core signaling pathways from identified GWGEN and core GWGENs in each aging stage of human skin 6 2.2. Investigating skin aging mechanism by differential core pathways from young-stage to middle-stage skin aging 17 2.3. Investigating skin aging progression mechanism of differential core pathways from middle-stage to elder-stage skin aging 18 2.4. Drug target selection and multiple-molecule drug design for young-stage to elder-stage skin aging. 21 Chapter 3. Discussion 24 3.1. Overview of molecular mechanism for skin aging progression in different stages 24 3.2. Investigating aging mechanisms by differential core pathways from young stage to middle stage of human skin aging 24 3.3. The aging progression mechanism from middle-stage to elder-stage human skin aging 27 3.4. The genetic and epigenetic progression mechanism from young-stage to elder-stage skin aging 29 3.5. Systems drug discovery and design for skin aging via deep neural network learning approach and data mining method 31 Chapter 4. Materials and Methods 36 4.1. Overview of the construction for core GWGENs of human skin from young-stage to elder-stage 36 4.2. Big data mining and data preprocessing of microarray data for human skin 37 4.3. Dynamic system models of the interspecies GWGENs for human skin 38 4.4. System identification approach of dynamic models of candidate GWGEN via microarray data 40 4.5. Pruning false-positives in candidate GWGENs to obtain real GWGENs by system order detection scheme 47 4.6. Extracting the core network structures from real GWGENs by the PNP method 49 4.7. Applying Drug-Target Interaction Model with DNN and Drug Toxicity Filter to Systems Drug Discovery and Design for Multiple-Molecule drug of Skin Aging. 52 Chapter 5. Conclusion 58 References 59

    1. Zhang, S.; Duan, E. Fighting against Skin Aging: The Way from Bench to Bedside. Cell transplantation 2018, 27, 729-738, doi:10.1177/0963689717725755.
    2. Niccoli, T.; Partridge, L. Ageing as a Risk Factor for Disease. Current Biology 2012, 22, R741-R752, doi:https://doi.org/10.1016/j.cub.2012.07.024.
    3. Batisse, D.; Bazin, R.; Baldeweck, T. Influence of age on the wrinkling capacities of skin. Skin Research and Technology 2002, 8, 148-154, doi:10.1034/j.1600-0846.2002.10308.x.
    4. Poljšak B., D.R.G., Godić A. Intrinsic skin aging: The role of oxidative stress. Acta Dermatovenerol. Alp. Pannonica Adriat. 2012, 21, 33–36.
    5. Ambros, V. The functions of animal microRNAs. Nature 2004, 431, 350-355, doi:10.1038/nature02871.
    6. Bartel, D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116, 281-297, doi:https://doi.org/10.1016/S0092-8674(04)00045-5.
    7. Yi, R.; Poy, M.N.; Stoffel, M.; Fuchs, E. A skin microRNA promotes differentiation by repressing 'stemness'. Nature 2008, 452, 225-229, doi:10.1038/nature06642.
    8. Wei, T.; Orfanidis, K.; Xu, N.; Janson, P.; Ståhle, M.; Pivarcsi, A.; Sonkoly, E. The expression of microRNA-203 during human skin morphogenesis. Experimental Dermatology 2010, 19, 854-856, doi:10.1111/j.1600-0625.2010.01118.x.
    9. Hildebrand, J.; Rütze, M.; Walz, N.; Gallinat, S.; Wenck, H.; Deppert, W.; Grundhoff, A.; Knott, A. A Comprehensive Analysis of MicroRNA Expression During Human Keratinocyte Differentiation In Vitro and In Vivo. Journal of Investigative Dermatology 2011, 131, 20-29, doi:https://doi.org/10.1038/jid.2010.268.
    10. Li, D.; Li, X.I.; Wang, A.; Meisgen, F.; Pivarcsi, A.; Sonkoly, E.; Ståhle, M.; Landén, N.X. MicroRNA-31 Promotes Skin Wound Healing by Enhancing Keratinocyte Proliferation and Migration. Journal of Investigative Dermatology 2015, 135, 1676-1685, doi:https://doi.org/10.1038/jid.2015.48.
    11. Fahs, F.; Bi, X.; Yu, F.-S.; Zhou, L.; Mi, Q.-S. New insights into microRNAs in skin wound healing. IUBMB Life 2015, 67, 889-896, doi:10.1002/iub.1449.
    12. Smith-Vikos, T.; Slack, F.J. MicroRNAs and their roles in aging. Journal of cell science 2012, 125, 7-17, doi:10.1242/jcs.099200.
    13. Mercer, T.R.; Dinger, M.E.; Mattick, J.S. Long non-coding RNAs: insights into functions. Nature Reviews Genetics 2009, 10, 155, doi:10.1038/nrg2521.
    14. Rinn, J.L.; Chang, H.Y. Genome regulation by long noncoding RNAs. Annual review of biochemistry 2012, 81, 145-166, doi:10.1146/annurev-biochem-051410-092902.
    15. He, J.; Tu, C.; Liu, Y. Role of lncRNAs in aging and age-related diseases. AGING MEDICINE 2018, 1, 158-175, doi:10.1002/agm2.12030.
    16. Thorvaldsen, J.L.a.D., Kristen L. and Bartolomei, Marisa S. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes & Development 1998, 12, 3693-3702, doi:10.1101/gad.12.23.3693.
    17. Sousa-Franco, A.; Rebelo, K.; da Rocha, S.T.; Bernardes de Jesus, B. LncRNAs regulating stemness in aging. Aging cell 2019, 18, e12870-e12870, doi:10.1111/acel.12870.
    18. Fraga, M.F.; Agrelo, R.; Esteller, M. Cross-Talk between Aging and Cancer. Annals of the New York Academy of Sciences 2007, 1100, 60-74, doi:10.1196/annals.1395.005.
    19. Koch, C.M.; Suschek, C.V.; Lin, Q.; Bork, S.; Goergens, M.; Joussen, S.; Pallua, N.; Ho, A.D.; Zenke, M.; Wagner, W. Specific Age-Associated DNA Methylation Changes in Human Dermal Fibroblasts. PLOS ONE 2011, 6, e16679, doi:10.1371/journal.pone.0016679.
    20. Rinnerthaler, M.; Bischof, J.; Streubel, M.K.; Trost, A.; Richter, K. Oxidative stress in aging human skin. Biomolecules 2015, 5, 545-589, doi:10.3390/biom5020545.
    21. Kalyana Sundaram, I.; Sarangi, D.D.; Sundararajan, V.; George, S.; Sheik Mohideen, S. Poly herbal formulation with anti-elastase and anti-oxidant properties for skin anti-aging. BMC complementary and alternative medicine 2018, 18, 33-33, doi:10.1186/s12906-018-2097-9.
    22. Borut Poljšak1, R.G.D., Aleksandar Godić2. Intrinsic skin aging: the role of oxidative stress. Acta Dermatovenerol Alp Pannonica Adriat 2012, 21, 33-36.
    23. Tacutu, R.; Thornton, D.; Johnson, E.; Budovsky, A.; Barardo, D.; Craig, T.; Diana, E.; Lehmann, G.; Toren, D.; Wang, J., et al. Human Ageing Genomic Resources: new and updated databases. Nucleic acids research 2018, 46, D1083-D1090, doi:10.1093/nar/gkx1042.
    24. Partridge, L. Gerontology: Extending the healthspan. Nature 2016, 529, 154, doi:10.1038/529154a.
    25. Newman, J.C.; Milman, S.; Hashmi, S.K.; Austad, S.N.; Kirkland, J.L.; Halter, J.B.; Barzilai, N. Strategies and Challenges in Clinical Trials Targeting Human Aging. The journals of gerontology. Series A, Biological sciences and medical sciences 2016, 71, 1424-1434, doi:10.1093/gerona/glw149.
    26. Jin, G.; Wong, S.T.C. Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discovery Today 2014, 19, 637-644, doi:https://doi.org/10.1016/j.drudis.2013.11.005.
    27. Fuentealba, M.; Dönertaş, H.M.; Williams, R.; Labbadia, J.; Thornton, J.M.; Partridge, L. Using the drug-protein interactome to identify anti-ageing compounds for humans. PLOS Computational Biology 2019, 15, e1006639, doi:10.1371/journal.pcbi.1006639.
    28. Yang, F.; Xu, J.; Zeng, J. Drug-target interaction prediction by integrating chemical, genomic, functional and pharmacological data. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing 2014, 148-159.
    29. Leung, W.S.; Chou, C.-J.; Huang, T.-C.; Yang, P.-M. An Integrated Bioinformatics Analysis Repurposes an Antihelminthic Drug Niclosamide for Treating HMGA2-Overexpressing Human Colorectal Cancer. Cancers 2019, 11, doi:10.3390/cancers11101482.
    30. LeBeau, J.E. The role of the LD50 determination in drug safety evaluation. Regulatory Toxicology and Pharmacology 1983, 3, 71-74, doi:https://doi.org/10.1016/0273-2300(83)90051-X.
    31. Ghosh, S.; Liu, B.; Wang, Y.; Hao, Q.; Zhou, Z. Lamin A Is an Endogenous SIRT6 Activator and Promotes SIRT6-Mediated DNA Repair. Cell Reports 2015, 13, 1396-1406, doi:https://doi.org/10.1016/j.celrep.2015.10.006.
    32. Kaidi, A.; Weinert, B.T.; Choudhary, C.; Jackson, S.P. Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science (New York, N.Y.) 2010, 329, 1348-1353, doi:10.1126/science.1192049.
    33. Mao, Z.; Hine, C.; Tian, X.; Van Meter, M.; Au, M.; Vaidya, A.; Seluanov, A.; Gorbunova, V. SIRT6 promotes DNA repair under stress by activating PARP1. Science (New York, N.Y.) 2011, 332, 1443-1446, doi:10.1126/science.1202723.
    34. Mangerich, A.; #xfc; rkle, A. Pleiotropic Cellular Functions of PARP1 in Longevity and Aging: Genome Maintenance Meets Inflammation. Oxidative Medicine and Cellular Longevity 2012, 2012, 19, doi:10.1155/2012/321653.
    35. Brem, R.; Hall, J. XRCC1 is required for DNA single-strand break repair in human cells. Nucleic acids research 2005, 33, 2512-2520, doi:10.1093/nar/gki543.
    36. Zannini, L.; Delia, D.; Buscemi, G. CHK2 kinase in the DNA damage response and beyond. Journal of Molecular Cell Biology 2014, 6, 442-457, doi:10.1093/jmcb/mju045.
    37. Umegaki-Arao, N.; Tamai, K.; Nimura, K.; Serada, S.; Naka, T.; Nakano, H.; Katayama, I. Karyopherin Alpha2 Is Essential for rRNA Transcription and Protein Synthesis in Proliferative Keratinocytes. PLOS ONE 2013, 8, e76416, doi:10.1371/journal.pone.0076416.
    38. Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2016, 1863, 2977-2992, doi:https://doi.org/10.1016/j.bbamcr.2016.09.012.
    39. Oxidative Stress-Induced Diseases via the ASK1 Signaling Pathway. International Journal of Cell Biology 2012, 10.1155/2012/439587, 5, doi:10.1155/2012/439587.
    40. Ferraro, E.; Pesaresi, M.G.; De Zio, D.; Cencioni, M.T.; Gortat, A.; Cozzolino, M.; Berghella, L.; Salvatore, A.M.; Oettinghaus, B.; Scorrano, L., et al. Apaf1 plays a pro-survival role by regulating centrosome morphology and function. Journal of Cell Science 2011, 124, 3450, doi:10.1242/jcs.086298.
    41. Lagouge, M.; Larsson, N.G. The role of mitochondrial DNA mutations and free radicals in disease and aging. Journal of internal medicine 2013, 273, doi:10.1111/joim.12055.
    42. Tan, S.; Ding, K.; Li, R.; Zhang, W.; Li, G.; Kong, X.; Qian, P.; Lobie, P.E.; Zhu, T. Identification of miR-26 as a key mediator of estrogen stimulated cell proliferation by targeting CHD1, GREB1 and KPNA2. Breast Cancer Research 2014, 16, R40, doi:10.1186/bcr3644.
    43. Anders, L.; Ke, N.; Hydbring, P.; Choi, Y.J.; Widlund, H.R.; Chick, J.M.; Zhai, H.; Vidal, M.; Gygi, S.P.; Braun, P., et al. A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer cell 2011, 20, 620-634, doi:10.1016/j.ccr.2011.10.001.
    44. Kwok, C.T.D.; Leung, M.H.; Qin, J.; Qin, Y.; Wang, J.; Lee, Y.L.; Yao, K.M. The Forkhead box transcription factor FOXM1 is required for the maintenance of cell proliferation and protection against oxidative stress in human embryonic stem cells. Stem Cell Research 2016, 16, 651-661, doi:https://doi.org/10.1016/j.scr.2016.03.007.
    45. Balasuriya, N.; McKenna, M.; Liu, X.; Li, S.S.C.; O'Donoghue, P. Phosphorylation-Dependent Inhibition of Akt1. Genes 2018, 9, 450, doi:10.3390/genes9090450.
    46. Noh, E.-M.; Park, J.; Song, H.-R.; Kim, J.-M.; Lee, M.; Song, H.-K.; Hong, O.-Y.; Whang, P.H.; Han, M.-K.; Kwon, K.-B., et al. Skin Aging-Dependent Activation of the PI3K Signaling Pathway via Downregulation of PTEN Increases Intracellular ROS in Human Dermal Fibroblasts. Oxidative medicine and cellular longevity 2016, 2016, 6354261-6354261, doi:10.1155/2016/6354261.
    47. Webb, A.E.; Brunet, A. FOXO transcription factors: key regulators of cellular quality control. Trends in biochemical sciences 2014, 39, 159-169, doi:10.1016/j.tibs.2014.02.003.
    48. Hagenbuchner, J.; Kuznetsov, A.; Hermann, M.; Hausott, B.; Obexer, P.; Ausserlechner, M.J. FOXO3-induced reactive oxygen species are regulated by BCL2L11 (Bim) and SESN3. Journal of Cell Science 2012, 125, 1191, doi:10.1242/jcs.092098.
    49. Das, T.P.; Suman, S.; Alatassi, H.; Ankem, M.K.; Damodaran, C. Inhibition of AKT promotes FOXO3a-dependent apoptosis in prostate cancer. Cell Death &Amp; Disease 2016, 7, e2111, doi:10.1038/cddis.2015.403
    https://www.nature.com/articles/cddis2015403#supplementary-information.
    50. Moskalev, A.A.; Smit-McBride, Z.; Shaposhnikov, M.V.; Plyusnina, E.N.; Zhavoronkov, A.; Budovsky, A.; Tacutu, R.; Fraifeld, V.E. Gadd45 proteins: relevance to aging, longevity and age-related pathologies. Ageing research reviews 2012, 11, 51-66, doi:10.1016/j.arr.2011.09.003.
    51. Borg, M.; Brincat, S.; Camilleri, G.; Schembri-Wismayer, P.; Brincat, M.; Calleja-Agius, J. The role of cytokines in skin aging. Climacteric 2013, 16, 514-521, doi:10.3109/13697137.2013.802303.
    52. Hald, A.; Andrés, R.M.; Salskov-Iversen, M.L.; Kjellerup, R.B.; Iversen, L.; Johansen, C. STAT1 expression and activation is increased in lesional psoriatic skin. British Journal of Dermatology 2013, 168, 302-310, doi:10.1111/bjd.12049.
    53. Pittayapruek, P.; Meephansan, J.; Prapapan, O.; Komine, M.; Ohtsuki, M. Role of Matrix Metalloproteinases in Photoaging and Photocarcinogenesis. International journal of molecular sciences 2016, 17, 868, doi:10.3390/ijms17060868.
    54. Adly, M.A.; Assaf, H.; Hussein, M.R. Neurotrophins and Skin Aging. In Textbook of Aging Skin, Farage, M.A., Miller, K.W., Maibach, H.I., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 2017; 10.1007/978-3-662-47398-6_15pp. 515-527.
    55. Zheng, M.; McKeown-Longo, P.J. Regulation of HEF1 Expression and Phosphorylation by TGF-β1 and Cell Adhesion. Journal of Biological Chemistry 2002, 277, 39599-39608, doi:10.1074/jbc.M202263200.
    56. Wang, H., Chen, H., Ma, M., Wang, J., Tang, T., Ni, L., Yu, J., Li, Y., Bai, B. miR-573 regulates melanoma progression by targeting the melanoma cell adhesion molecule. Oncology Reports 30.1 2013, 520-526.
    57. Ferby, I.; Reschke, M.; Kudlacek, O.; Knyazev, P.; Pantè, G.; Amann, K.; Sommergruber, W.; Kraut, N.; Ullrich, A.; Fässler, R., et al. Mig6 is a negative regulator of EGF receptor–mediated skin morphogenesis and tumor formation. Nature Medicine 2006, 12, 568-573, doi:10.1038/nm1401.
    58. Raddatz, G.; Hagemann, S.; Aran, D.; Söhle, J.; Kulkarni, P.P.; Kaderali, L.; Hellman, A.; Winnefeld, M.; Lyko, F. Aging is associated with highly defined epigenetic changes in the human epidermis. Epigenetics & chromatin 2013, 6, 36-36, doi:10.1186/1756-8935-6-36.
    59. Chen, G.; Cheng, Y.; Tang, Y.; Martinka, M.; Li, G. Role of Tip60 in Human Melanoma Cell Migration, Metastasis, and Patient Survival. Journal of Investigative Dermatology 2012, 132, 2632-2641, doi:https://doi.org/10.1038/jid.2012.193.
    60. Deng, X., Gao, F., & May, W. S. Bcl2 retards G1/S cell cycle transition by regulating intracellular ROS. Blood, 102(9) 2003, 3179-3185.
    61. Ryu, S.J.; Oh, Y.S.; Park, S.C. Failure of stress-induced downregulation of Bcl-2 contributes to apoptosis resistance in senescent human diploid fibroblasts. Cell Death And Differentiation 2007, 14, 1020, doi:10.1038/sj.cdd.4402091
    https://www.nature.com/articles/4402091#supplementary-information.
    62. D'Mello, S.A.N.; Finlay, G.J.; Baguley, B.C.; Askarian-Amiri, M.E. Signaling Pathways in Melanogenesis. International journal of molecular sciences 2016, 17, 1144, doi:10.3390/ijms17071144.
    63. Bondurand, N.; Pingault, V.; Goerich, D.E.; Lemort, N.; Sock, E.; Caignec, C.L.; Wegner, M.; Goossens, M. Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome. Human Molecular Genetics 2000, 9, 1907-1917, doi:10.1093/hmg/9.13.1907.
    64. Zhou, Y.; Ching, Y.-P.; Chun, A.C.S.; Jin, D.-Y. Nuclear Localization of the Cell Cycle Regulator CDH1 and Its Regulation by Phosphorylation. Journal of Biological Chemistry 2003, 278, 12530-12536, doi:10.1074/jbc.M212853200.
    65. Harkness, T.A.A. Activating the Anaphase Promoting Complex to Enhance Genomic Stability and Prolong Lifespan. International journal of molecular sciences 2018, 19, 1888, doi:10.3390/ijms19071888.
    66. Quan, T.; Qin, Z.; Shao, Y.; Xu, Y.; Voorhees, J.J.; Fisher, G.J. Retinoids suppress cysteine-rich protein 61 (CCN1), a negative regulator of collagen homeostasis, in skin equivalent cultures and aged human skin in vivo. Experimental dermatology 2011, 20, 572-576, doi:10.1111/j.1600-0625.2011.01278.x.
    67. Quan, T.; Fisher, G.J. Role of Age-Associated Alterations of the Dermal Extracellular Matrix Microenvironment in Human Skin Aging: A Mini-Review. Gerontology 2015, 61, 427-434, doi:10.1159/000371708.
    68. Liu, N.; Matsumura, H.; Kato, T.; Ichinose, S.; Takada, A.; Namiki, T.; Asakawa, K.; Morinaga, H.; Mohri, Y.; De Arcangelis, A., et al. Stem cell competition orchestrates skin homeostasis and ageing. Nature 2019, 568, 344-350, doi:10.1038/s41586-019-1085-7.
    69. Juric, V.; Chen, C.-C.; Lau, L.F. TNFα-induced apoptosis enabled by CCN1/CYR61: pathways of reactive oxygen species generation and cytochrome c release. PloS one 2012, 7, e31303-e31303, doi:10.1371/journal.pone.0031303.
    70. Marcotte, R.; Lacelle, C.; Wang, E. Senescent fibroblasts resist apoptosis by downregulating caspase-3. Mechanisms of Ageing and Development 2004, 125, 777-783, doi:https://doi.org/10.1016/j.mad.2004.07.007.
    71. Maggio, M.; Guralnik, J.M.; Longo, D.L.; Ferrucci, L. Interleukin-6 in aging and chronic disease: a magnificent pathway. The journals of gerontology. Series A, Biological sciences and medical sciences 2006, 61, 575-584, doi:10.1093/gerona/61.6.575.
    72. Elbediwy, A.; Vincent-Mistiaen, Z.I.; Spencer-Dene, B.; Stone, R.K.; Boeing, S.; Wculek, S.K.; Cordero, J.; Tan, E.H.; Ridgway, R.; Brunton, V.G., et al. Integrin signalling regulates YAP and TAZ to control skin homeostasis. Development (Cambridge, England) 2016, 143, 1674-1687, doi:10.1242/dev.133728.
    73. Mu, R.; Wang, Y.B.; Wu, M.; Yang, Y.; Song, W.; Li, T.; Zhang, W.N.; Tan, B.; Li, A.L.; Wang, N., et al. Depletion of pre-mRNA splicing factor Cdc5L inhibits mitotic progression and triggers mitotic catastrophe. Cell Death &Amp; Disease 2014, 5, e1151, doi:10.1038/cddis.2014.117
    https://www.nature.com/articles/cddis2014117#supplementary-information.
    74. Stevenson, S.; Thornton, J. Effect of estrogens on skin aging and the potential role of SERMs. Clinical interventions in aging 2007, 2, 283-297.
    75. Hu, D.; Hughes, M.A.; Cherry, G.W. Topical tamoxifen — a potential therapeutic regime in treating excessive dermal scarring? British Journal of Plastic Surgery 1998, 51, 462-469, doi:https://doi.org/10.1054/bjps.1997.0100.
    76. Grigoryants, V.; Hannawa, K.K.; Pearce, C.G.; Sinha, I.; Roelofs, K.J.; Ailawadi, G.; Deatrick, K.B.; Woodrum, D.T.; Cho, B.S.; Henke, P.K., et al. Tamoxifen up-regulates catalase production, inhibits vessel wall neutrophil infiltration, and attenuates development of experimental abdominal aortic aneurysms. Journal of Vascular Surgery 2005, 41, 108-114, doi:https://doi.org/10.1016/j.jvs.2004.09.033.
    77. Brahmi SA, B.H., Bouyahyaoui Y, Mernissi FZ, El Mesbahi O. Delayed Maculopapular Eruption Induced by Tamoxifen. A Case Report. J Cancer Sci Ther 2011, 3, 079-080, doi:10.4172/1948-5956.1000063.
    78. Surazynski, A., Jarzabek, K., Haczynski, J., Laudanski, P., Palka, J., & Wolczynski, S. Differential effects of estradiol and raloxifene on collagen biosynthesis in cultured human skin fibroblasts. International Journal of Molecular Medicine 2003, 12, 803-809, doi:https://doi.org/10.3892/ijmm.12.5.803.
    79. Ashida, Y.; Denda, M.; Hirao, T. Histamine H1 and H2 Receptor Antagonists Accelerate Skin Barrier Repair and Prevent Epidermal Hyperplasia Induced by Barrier Disruption in a Dry Environment. Journal of Investigative Dermatology 2001, 116, 261-265, doi:https://doi.org/10.1046/j.1523-1747.2001.01238.x.
    80. N, S. Cimetidine: a review of the recent developments and reports in cutaneous medicine. Dermatol Online J 2003 Mar, 9, 4.
    81. Nelis, G.F. Safety Profile of Omeprazole. Digestion 1989, 44(suppl 1), 68-76, doi:10.1159/000200106.
    82. Odeh, M.; Lurie, M.; Oliven, A. Cutaneous leucocytoclastic vasculitis associated with omeprazole. Postgraduate Medical Journal 2002, 78, 114, doi:10.1136/pmj.78.916.114.
    83. Li, J.; Zhang, C.-X.; Liu, Y.-M.; Chen, K.-L.; Chen, G. A comparative study of anti-aging properties and mechanism: resveratrol and caloric restriction. Oncotarget 2017, 8, 65717-65729, doi:10.18632/oncotarget.20084.
    84. Baxter, R.A. Anti-aging properties of resveratrol: review and report of a potent new antioxidant skin care formulation. Journal of Cosmetic Dermatology 2008, 7, 2-7, doi:10.1111/j.1473-2165.2008.00354.x.
    85. Haustead, D.J.; Stevenson, A.; Saxena, V.; Marriage, F.; Firth, M.; Silla, R.; Martin, L.; Adcroft, K.F.; Rea, S.; Day, P.J., et al. Transcriptome analysis of human ageing in male skin shows mid-life period of variability and central role of NF-κB. Scientific reports 2016, 6, 26846-26846, doi:10.1038/srep26846.
    86. Makrantonaki, E.; Brink, T.C.; Zampeli, V.; Elewa, R.M.; Mlody, B.; Hossini, A.M.; Hermes, B.; Krause, U.; Knolle, J.; Abdallah, M., et al. Identification of Biomarkers of Human Skin Ageing in Both Genders. Wnt Signalling - A Label of Skin Ageing? PLOS ONE 2012, 7, e50393, doi:10.1371/journal.pone.0050393.
    87. Lin, L.-H.; Lee, H.-C.; Li, W.-H.; Chen, B.-S. Dynamic modeling of cis-regulatory circuits and gene expression prediction via cross-gene identification. BMC bioinformatics 2005, 6, 258-258, doi:10.1186/1471-2105-6-258.
    88. Chen, H.-C.; Lee, H.-C.; Lin, T.-Y.; Li, W.-H.; Chen, B.-S. Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle. Bioinformatics 2004, 20, 1914-1927, doi:10.1093/bioinformatics/bth178.
    89. Chen, B.-S.; Yang, S.-K.; Lan, C.-Y.; Chuang, Y.-J. A systems biology approach to construct the gene regulatory network of systemic inflammation via microarray and databases mining. BMC medical genomics 2008, 1, 46-46, doi:10.1186/1755-8794-1-46.
    90. Xenarios, I.; Rice, D.W.; Salwinski, L.; Baron, M.K.; Marcotte, E.M.; Eisenberg, D. DIP: the database of interacting proteins. Nucleic acids research 2000, 28, 289-291, doi:10.1093/nar/28.1.289.
    91. Bader, G.D.; Betel, D.; Hogue, C.W.V. BIND: the Biomolecular Interaction Network Database. Nucleic acids research 2003, 31, 248-250, doi:10.1093/nar/gkg056.
    92. Oughtred, R.; Chatr-aryamontri, A.; Breitkreutz, B.-J.; Chang, C.S.; Rust, J.M.; Theesfeld, C.L.; Heinicke, S.; Breitkreutz, A.; Chen, D.; Hirschman, J., et al. BioGRID: A Resource for Studying Biological Interactions in Yeast. Cold Spring Harbor protocols 2016, 2016, pdb.top080754-pdb.top080754, doi:10.1101/pdb.top080754.
    93. Kerrien, S.; Alam-Faruque, Y.; Aranda, B.; Bancarz, I.; Bridge, A.; Derow, C.; Dimmer, E.; Feuermann, M.; Friedrichsen, A.; Huntley, R., et al. IntAct--open source resource for molecular interaction data. Nucleic acids research 2007, 35, D561-D565, doi:10.1093/nar/gkl958.
    94. Chatr-aryamontri, A.; Ceol, A.; Palazzi, L.M.; Nardelli, G.; Schneider, M.V.; Castagnoli, L.; Cesareni, G. MINT: the Molecular INTeraction database. Nucleic acids research 2007, 35, D572-D574, doi:10.1093/nar/gkl950.
    95. Zheng, G.; Tu, K.; Yang, Q.; Xiong, Y.; Wei, C.; Xie, L.; Zhu, Y.; Li, Y. ITFP: an integrated platform of mammalian transcription factors. Bioinformatics 2008, 24, 2416-2417, doi:10.1093/bioinformatics/btn439.
    96. Friard, O.; Re, A.; Taverna, D.; De Bortoli, M.; Corá, D. CircuitsDB: a database of mixed microRNA/transcription factor feed-forward regulatory circuits in human and mouse. BMC Bioinformatics 2010, 11, 435, doi:10.1186/1471-2105-11-435.
    97. Tacutu, R.; Craig, T.; Budovsky, A.; Wuttke, D.; Lehmann, G.; Taranukha, D.; Costa, J.; Fraifeld, V.E.; de Magalhães, J.P. Human Ageing Genomic Resources: Integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Research 2012, 41, D1027-D1033, doi:10.1093/nar/gks1155.

    QR CODE