研究生: |
彭健育 Chien-Yu Peng |
---|---|
論文名稱: |
應用隨機積分決定高可靠度產品最適預燒時間之研究 Optimal Burn-in Time Via Stochastic Integral |
指導教授: |
曾勝滄
Tseng, S. T. |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 40 |
中文關鍵詞: | 預燒程序 、高可靠度產品 、混和 Wiener 過程 、積分 Wiener 過程 、最適篩選法則 |
外文關鍵詞: | burn-in procedure, mixture Wiener process |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了確保產品品質能長期符合消費者之需求,
如何進行一有效的篩選試驗 (Screening Procedure, 或稱預燒 (Burn-in) 測試) 以及評估產品之壽命,
是所有製造商或生產者皆要面臨之一重要決策問題。針對高可靠度產品,
若存在一與壽命具高度相關之品質特徵值 (Quality Characteristic, 簡稱 QC)
且假設該品質特性之衰變路徑服從一 Wiener 過程,
則可由成本觀點建構一套篩選試驗執行程序, 以決定最適之預燒時間。
然而當產品品質特徵值之衰變速度緩慢時, 將須要很長的預燒時間才能達到篩選良莠之目的,
因此如何利用類似 Cusum 之觀念, 整合隨機積分來達到快速分類, 以確保產品品質,
將是決策者之一大挑戰。
本論文首先利用混合 Wiener 過程來描述產品在進行預燒測試之前的衰退路徑,
接著引進積分之 Wiener 過程來計算衰變路徑的累積衰退量,
進而建構出適當判別 (分類) 準則, 得以快速篩選出產品之不良品。
最後本研究將與 Tseng \& Tang (2001) 之方法作理論上的比較分析,
詳細說明錯誤分類損失的機率及成本之差異,
並探討此兩種方法的使用時機及範圍限制。
此研究之成果可提供生產者剔除不良產品之有效篩選程序,
它將有助於廠商縮短預燒測試時間及節省試驗成本。
Chhikara, R. S. and Folks, L., (1989),The Inverse Gaussain Distribution. Theory, Methodology, and Applications, Marcel Dekker, Inc.
Cohen, A. C. (1967),``Estimation in Mixture of Two Normal Distributions,"Technometrics, 9, 15-28.
Hoel, P. G., Port, S. C. and Stone, C. J. (1972),Introduction to Stochastic Processes, Waveland Press, Illinois 60070.
Jensen, F. and Petersen, N. E., (1982), Burn-in: An Engineering Approach to the Design and Analysis of Burn-in Procedures, John Wiley \& Sons, Inc.
Kuo, W., (1984),``Reliability Enhanceement Through Optimal Burn-in,",IEEE Transactions on Reliability, 3, 145-156.
Kuo, W. and Kuo, Y, (1983),``Facing the headaches of Early Failures: A State-of-the Art Review of Burn-in Decisions,",Proceedings of the IEEE, 71, 11, 1257-1266.
Lawrence, M. J., (1966),``An Investigation of the Burn-in Problem,"Technometrics, 8(1), 61-71.
Lindsay, B. G., (1989),``Moment Matrices: Applications in Mixturs,"Annals of Statistics, 17, 722-740.
Lindsay, B. G. and Basak, P., (1993),``Multivariate Normal Mixturs: A Fast Consistent Method of Moments,"Journal of the American Statistical Association, 88, 468-476.
Leemis, L. M. and Beneke, M., (1990),``Burn-in Models and Methods: A Review,"IIE Transactions, 22(2), 172-180.
Meeker, W. Q. and Escobar, L. A. (1998),Statistical Methods for Reliability Data,New York: John Wiley \& Sons.
Nelson, W., (1990),Accelerated Testing: Statistical Models, Test Plans, and Data Analyses,New York: John Wiley \& Sons.
Nguyen, D. G. and Nurthy, D. N. P., (1982),``Optimal Burn-in Time to Minimize Cost for Products Sold under Warranty,"IIE Transactions, 14(3), 167-174.
Titterington, D. M., Smith, A. F., and Makov, U. E. (1985),Statistical Analysis of Finite Mixture Distributions,New York: John Wiley \& Sons.
Tseng, S. T. and Tang, J., (2001),``Optimal Burn-in Time for Highly Reliable Products,"International Journal of Industrial Engineering, 8, 329-338.
Tseng, S. T., Tang, J. and Ku, I. H., (2002),``Determination of Optimal Burn-in Parameter and Residual Life for Highly Reliable Products,"To appear in Naval Research Logistics,
Tseng, S. T. and Yu, H. F., (1997),``A Termination Rule for Degradation Experiment,"IEEE Transactions on Reliability, 46, 130-133.
Yu, H. F. and Tseng, S. T., (1999),``Designing a Degradation Experiment,"Naval Research Logistics, 46, 689-706.
Wald, A. (1947),Sequential Analysis,New York: John Wiley \& Sons.
Watson, G. S. and Wells, W. T., (1961),``On the Probability of Improving the Mean Useful Life of Items by Eliminating Those with Short Lives,"Technometrics, 3(2), 281-298.
Whitmore, G. A. and Yalovsky, M., (1978),``A Normalizing Logarithmic Transformation for Inverse Gaussian Random Variables,"Technometrics, 20, 207-208.