研究生: |
葉文嘉 Yeh, Wen Chia |
---|---|
論文名稱: |
製備鹼基/核苷酸-金離子配位奈米粒子於癌症治療之應用 Nucleobase and Nucleotide Coordinated Au(I/III) Nanoparticles for Anticancer Therapeutics |
指導教授: |
黃郁棻
Huang, Yu-Fen |
口試委員: |
林宗宏
Lin, Zong-Hong 張建文 Chang, Chien-Wen |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2016 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 53 |
中文關鍵詞: | 配位聚合 、癌症治療 |
外文關鍵詞: | coordinatied nanoparticle, cancer therapy |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金錯合物在癌症治療的應用上,展現良好的腫瘤抑制效果。本研究藉由加入腺嘌呤 (Adenine, A)和金離子 (Au3+)自組裝,同時摻雜三磷酸腺苷 (ATP)及硫醇-聚乙二醇 (HSPEG),合成水和粒徑約89 ± 17 nm 的配位奈米金粒子。摻雜ATP後未影響Au:A的配位情形,其含量~8%且ATP多在奈米粒子表面,提供奈米粒子表面負電排斥力獲得良好的分散性。摻雜HSPEG後,增加鹽類穩定性及降低水和粒徑。HSPEG-(Au:A/ATP)奈米粒子具有穀胱甘肽 (Glutathione, GSH)應答性,在高濃度GSH環境下,奈米粒子會被破壞並釋出內部金離子。使用配位奈米金粒子對Tramp-C1細胞株進行細胞毒性測試,得到24小時IC50~48 μM ,優於金離子 (IC50~51 μM),且有促使細胞凋亡的情形發生。藉由添加GSH 抑制劑,亦可提升HSPEG-(Au:A/ATP)的作用能力,證實開發奈米藥物與細胞內GSH濃度具一定關聯性。最後,藉由配位聚合物能容納客體 (guest molecules)的特性包覆光敏劑Protoporphyrin IX (PpIX),藉由奈米粒子與細胞內GSH作用,促進PpIX的光照效果以降低6小時之IC50~55 μM。此配位金奈米粒子可經由觸發應答性釋放內部金離子,與細胞內GSH作用特性及包覆藥物特性於生醫領域應用上展現良好的前瞻性,在未來,期望使用配位金奈米粒子克服順鉑 (Cisplatin)之抗藥性問題。
Stable Au (III) and Au (I) complexes, including cyclometallated gold complex, are promising candidates for anticancer drugs that exhibit potent in vitro and in vivo antitumor activities against human carcinoma xenografts tumors. Herein, a supramolecular synthesis route was presented for hierarchical self-assembly of coordinated adenine-Au (III) complexes into colloidal nanoparticles. During the polymerization process, the addition of adenosine triphosphate (ATP) and thiolated poly(ethylene glycol) was found to greatly improve the particle size control as well as the colloidal stability to against demetallation in physiological conditions. ATP taken up about 8% of coordinated Au-nanoparticles and mostly on the surface . However, the as-prepared colloidal Au-nanoparticles could be easily decomposed in high glutathione (GSH) levels, leading to a fast release inside living tumor cells. When incubated with cancer cells, the coordinated Au-nanoparticles displayed a significant in vitro antitumor effect with low IC50 value (~48 uM). Apoptosis analysis also confirmed that the nanoparticulate formulation promoted a higher cell dead rate of cancer cells than Au ions with the same dose. The relation of intracellular GSH concentration to Au-nanoparticles was found by pretreatment of GSH inhibitor. Photosensitizer were furthermore incorporated into the supramolecular assemblies and an increased Au-based therapeutic efficacy for prostate cancers treatment was successfully achieved . Overall, these nanoparticulate Au-bearing complexes represent an attractive alternative to overcome the failure of cisplatin resistance in traditional chemotherapy.
1. Rosenberg, B.; Van Camp, L.; Krigas, T., Inhibition of Cell Division in Escherichia Coli by Electrolysis Products from a Platinum Electrode. Nature 1965, 205 (4972), 698-699.
2. Rosenberg, B.; Vancamp, L., Platinum Compounds: a New Class of Potent Antitumour Agents. Nature 1969, 222, 385-386.
3. Oberoi, H. S.; Nukolova, N. V.; Kabanov, A. V.; Bronich, T. K., Nanocarriers for Delivery of Platinum Anticancer Drugs. Advanced drug delivery reviews 2013, 65 (13), 1667-1685.
4. Wani, W. A.; Prashar, S.; Shreaz, S.; Gómez-Ruiz, S., Nanostructured materials Functionalized with Metal Complexes: In Search of Alternatives for Administering Anticancer Metallodrugs. Coordination Chemistry Reviews 2016, 312, 67-98.
5. Johnstone, T. C.; Suntharalingam, K.; Lippard, S. J., The Next Generation of Platinum Drugs: Targeted Pt (II) Agents, Nanoparticle Delivery, and Pt (IV) Prodrugs. Chemical reviews 2016, 116 (5), 3436-3486.
6. Ozols, R. F., Ovarian Cancer: New Clinical Approaches. Cancer treatment reviews 1991, 18, 77-83.
7. Ferreira, C. G.; Tolis, C.; Span, S. W.; Peters, G. J.; van Lopik, T.; Kummer, A. J.; Pinedo, H. M.; Giaccone, G., Drug-induced Apoptosis in Lung Cancer Cells is not Mediated by the Fas/FasL (CD95/APO1) Signaling Pathway. Clinical cancer research 2000, 6 (1), 203-212.
8. Mjos, K. D.; Orvig, C., Metallodrugs in Medicinal Inorganic Chemistry. Chemical reviews 2014, 114 (8), 4540-4563.
9. Mirabelli, C. K.; Johnson, R. K.; Sung, C. M.; Faucette, L.; Muirhead, K.; Crooke, S. T., Evaluation of the In Vivo Antitumor Activity and In Vitro Cytotoxic Properties of Auranofin, a Coordinated Gold Compound, In Murine Tumor Models. Cancer research 1985, 45 (1), 32-39.
10. Wang, Y.; He, Q. Y.; Che, C. M.; Chiu, J. F., Proteomic Characterization of the Cytotoxic Mechanism of Gold(III) porphyrin 1a, a Potential Anticancer Drug. Proteomics 2006, 6 (1), 131-142.
11. Mirabelli, C. K.; Sung, C.-M.; Zimmerman, J. P.; Hill, D. T.; Mong, S.; Crooke, S. T., Interactions of Gold Coordination Complexes with DNA. Biochemical pharmacology 1986, 35 (9), 1427-1433.
12. Messori, L.; Orioli, P.; Tempi, C.; Marcon, G., Interactions of Selected Gold (III) Complexes with Calf Thymus DNA. Biochemical and biophysical research communications 2001, 281 (2), 352-360.
13. Berners-Price, S. J.; Filipovska, A., Gold Compounds as Therapeutic Agents for Human Diseases. Metallomics 2011, 3 (9), 863-873.
14. Fricker, S. P., Cysteine Proteases as Targets for Metal-based Drugs. Metallomics 2010, 2 (6), 366-377.
15. Krishnamurthy, D.; Karver, M. R.; Fiorillo, E.; Orru, V.; Stanford, S. M.; Bottini, N.; Barrios, A. M., Gold (I)-mediated Inhibition of Protein Tyrosine Phosphatases: A Detailed in Vitro and Cellular Study. Journal of medicinal chemistry 2008, 51 (15), 4790-4795.
16. Markman, J. L.; Rekechenetskiy, A.; Holler, E.; Ljubimova, J. Y., Nanomedicine Therapeutic Approaches to Overcome Cancer Drug Resistance. Advanced drug delivery reviews 2013, 65 (13), 1866-1879.
17. Cheng, Z.; Dai, Y.; Kang, X.; Li, C.; Huang, S.; Lian, H.; Hou, Z.; Ma, P.; Lin, J., Gelatin-encapsulated Iron Oxide Nanoparticles for Platinum(IV) Prodrug Delivery, Enzyme-stimulated Release and MRI. Biomaterials 2014, 35 (24), 6359-6368.
18. Lin, Y.-X.; Gao, Y.-J.; Wang, Y.; Qiao, Z.-Y.; Fan, G.; Qiao, S.-L.; Zhang, R.-X.; Wang, L.; Wang, H., pH-Sensitive Polymeric Nanoparticles with Gold (I) Compound Payloads Synergistically Induce Cancer Cell Death Through Modulation of Autophagy. Molecular pharmaceutics 2015, 12 (8), 2869-2878.
19. Kasai, H.; Murakami, T.; Ikuta, Y.; Koseki, Y.; Baba, K.; Oikawa, H.; Nakanishi, H.; Okada, M.; Shoji, M.; Ueda, M., Creation of Pure Nanodrugs and Their Anticancer Properties. Angewandte Chemie International Edition 2012, 51 (41), 10315-10318.
20. Chen, F.; Zhao, Y.; Pan, Y.; Xue, X.; Zhang, X.; Kumar, A.; Liang, X.-J., Synergistically Enhanced Therapeutic Effect of a Carrier-Free HCPT/DOX Nanodrug on Breast Cancer Cells through Improved Cellular Drug Accumulation. Molecular pharmaceutics 2015, 12 (7), 2237-2244.
21. Shen, G.; Xing, R.; Zhang, N.; Chen, C.; Ma, G.; Yan, X., Interfacial Cohesion and Assembly of Bioadhesive Molecules for Design of Long-Term Stable Hydrophobic Nanodrugs toward Effective Anticancer Therapy. ACS nano 2016.
22. Oh, M.; Mirkin, C. A., Chemically Tailorable Colloidal Particles from Infinite Coordination Polymers. Nature 2005, 438 (7068), 651-654.
23. Imaz, I.; Rubio-Martínez, M.; An, J.; Sole-Font, I.; Rosi, N. L.; Maspoch, D., Metal–biomolecule frameworks (MBioFs). Chemical communications 2011, 47 (26), 7287-7302.
24. Gould, J. A.; Jones, J. T.; Bacsa, J.; Khimyak, Y. Z.; Rosseinsky, M. J., A Homochiral Three-dimensional Zinc Aspartate Framework That Displays Multiple Coordination Modes and Geometries. Chemical communications 2010, 46 (16), 2793-2795.
25. Liu, Y.; Xuan, W.; Cui, Y., Engineering Homochiral Metal‐Organic Frameworks for Heterogeneous Asymmetric Catalysis and Enantioselective Separation. Advanced Materials 2010, 22 (37), 4112-4135.
26. Salgado, E. N.; Radford, R. J.; Tezcan, F. A., Metal-directed Protein Self-assembly. Accounts of chemical research 2010, 43 (5), 661-672.
27. Wei, H.; Li, B.; Du, Y.; Dong, S.; Wang, E., Nucleobase-metal hybrid materials: Preparation of Submicrometer-scale, Spherical Colloidal Particles of Adenine-gold (III) via a Supramolecular Hierarchical Self-assembly Approach. Chemistry of materials 2007, 19 (12), 2987-2993.
28. Nishiyabu, R.; Hashimoto, N.; Cho, T.; Watanabe, K.; Yasunaga, T.; Endo, A.; Kaneko, K.; Niidome, T.; Murata, M.; Adachi, C., Nanoparticles of Adaptive Supramolecular Networks Self-assembled from Nucleotides and Lanthanide Ions. Journal of the American Chemical Society 2009, 131 (6), 2151-2158.
29. Zhang, X.; Deng, J.; Xue, Y.; Shi, G.; Zhou, T., Stimulus Response of Au-NPs@ GMP-Tb Core–Shell Nanoparticles: Toward Colorimetric and Fluorescent Dual-Mode Sensing of Alkaline Phosphatase Activity in Algal Blooms of a Freshwater Lake. Environmental science & technology 2015, 50 (2), 847-855.
30. Zhou, P.; Shi, R.; Yao, J.-f.; Sheng, C.-f.; Li, H., Supramolecular Self-assembly of Nucleotide–Metal Coordination Complexes: From Simple Molecules to Nanomaterials. Coordination Chemistry Reviews 2015, 292, 107-143.
31. Mathlouthi, M.; Seuvre, A.-M.; Koenig, J. L., Ft-ir and laser-Raman Spectra of Adenine and Adenosine. Carbohydrate research 1984, 131 (1), 1-15.
32. Sahu, R. K.; Mordechai, S., Chemometrics of Cells and Tissues Using IR Spectroscopy-Relevance in Biomedical Research. INTECH Open Access Publisher: 2012.
33. Castillo, P. M.; de la Mata, M.; Casula, M. F.; Sánchez-Alcázar, J. A.; Zaderenko, A. P., PEGylated versus non-PEGylated Magnetic Nanoparticles as Camptothecin Delivery System. Beilstein journal of nanotechnology 2014, 5 (1), 1312-1319.
34. Wu, G.; Fang, Y.-Z.; Yang, S.; Lupton, J. R.; Turner, N. D., Glutathione Metabolism and Its Implications for Health. The Journal of nutrition 2004, 134 (3), 489-492.
35. Wang, Y. C.; Li, Y.; Sun, T. M.; Xiong, M. H.; Wu, J.; Yang, Y. Y.; Wang, J., Core–Shell–Corona Micelle Stabilized by Reversible Cross‐Linkage for Intracellular Drug Delivery. Macromolecular rapid communications 2010, 31 (13), 1201-1206.
36. Armstrong, J.; Steinauer, K.; Hornung, B.; Irish, J.; Lecane, P.; Birrell, G.; Peehl, D.; Knox, S., Role of Glutathione Depletion and Reactive Oxygen Species Generation in Apoptotic Signaling in A Human B Lymphoma Cell Line. Cell death and differentiation 2002, 9 (3), 252-263.
37. Fan, H.; Yan, G.; Zhao, Z.; Hu, X.; Zhang, W.; Liu, H.; Fu, X.; Fu, T.; Zhang, X. B.; Tan, W., A Smart Photosensitizer–Manganese Dioxide Nanosystem for Enhanced Photodynamic Therapy by Reducing Glutathione Levels in Cancer Cells. Angewandte Chemie 2016, 128 (18), 5567-5572.