簡易檢索 / 詳目顯示

研究生: 陳昶文
Chen, Chang-Wen
論文名稱: 真空製程有機及鈣鈦鑛太陽能電池之元件與光學研究
Device and Optical Engineering for Vacuum Deposited Organic and Perovskite Solar Cells
指導教授: 林皓武
Lin, Hao-Wu
口試委員: 林皓武
Hao-Wu Lin
陳錦地
Chin-Ti Chen
林清富
Ching-Fuh Lin
吳志毅
Chih-I Wu
朱治偉
Chih-Wei Chu
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 170
中文關鍵詞: 太陽能電池有機鈣鈦鑛
外文關鍵詞: solar cells, organic, perovskite
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文研究以真空蒸鍍製程之有機及鈣鈦鑛太陽能電池之光學與元件結構對其元件表現之影響。
    首先,第一部份分別介紹了真空蒸鍍有機小分子與鈣鈦鑛太陽能電池的發展現況,接著分別簡介其理論及工作機制。
    論文的第二部份,我們針對真空蒸鍍有機小分子太陽能電池中之各種性質,包括光學常數、分子定向與排列、薄膜形態、載子傳輸、元件動力學、元件表現以及其中的關聯等進行系統性的研究。第二章描述CuPc薄膜表現出的單軸光學不等向性,其光軸方向垂直於基板表面;而CuPc與C60的混合層則表現出較弱的光學不等向性。在第三章中我們揭露了DBP與C60的混合比為1:2時,其平面混合異質接面結構元件有最佳的元件表現,是由於其具有適當的晶粒大小、部份連接的受子晶粒、緊密排列且平行於基板方向的施子分子等良好特性。在第四章中,使用兩種不同類型(施子-受子、受子-施子-受子)的小分子製作成的元件皆具有不錯的元件表現,其能量轉換效率分別為4.2%與3.8%。
    論文的第三部份,我們展示了一個創新的鈣鈦鑛太陽能電池製作方法,並透過光學模擬的方式進一步對元件結構進行優化,實際製作出的鈣鈦鑛太陽能電池顯示了高達15.4%的卓越效率。至於光學模擬的部份,我們的計算結果表示經過適當的元件結構設計,鈣鈦鑛太陽能電池在不加入抗反射層及散射層的情況下,能量轉換效率可達到20%。在與銅銦鎵硒薄膜共同製作成為串接式太陽能電池後效率更可望達到29%。


    In this thesis, I focus on the optical and device engineering of vacuum deposited organic and perovskite solar cells.
    In the first part of this thesis, I reviewed the development of vacuum deposited organic and perovskite solar cells, followed by the theory and working mechanisms of these two different solar cells.
    In the second part, I systematic studied the properties of vacuum deposited small molecule organic solar cells (SMOSCs), such as optical constants, molecular orientation, carrier transport and the correlation of the morphology, molecular stacking, dynamic and device performance. Chapter 2 described the uniaxial optical anisotropy with the optical axis perpendicular to the surface normal in CuPc neat film and the decreasing degree of anisotropy in CuPc:C60 mixed layer. In chapter 3, I revealed that DBP:C60 (1:2) PMHJ devices exhibited a superior performance due to their promising advantages including preferable domain sizes, partially interconnected acceptor grains and close packing donor molecules with horizontal orientation. In chapter 4, SMOSCs utilizing novel D-A and A-D-A type molecules as donors were fabricated and characterized and they exhibited promising power conversion efficiencies (PCEs) of 4.2% and 3.8%, respectively.
    In the third part, I demonstrated a novel vacuum sequential deposited method to fabricate the high quality perovskite thin films, and further optimized the device structures of perovskite solar cells by optical simulation. The practical perovskite solar cells delivered a remarkable performance of PCE as high as 15.4%. Our calculations also suggested that PCEs of up to 20% and 29% are feasible without any antireflection and light scattering structures in single and perovskite/CIGS tandem cells given a proper device structure design.

    中文摘要………………………………………………………………………………i Abstract………………………………………………………………………………..ii Contents………………………………………………………………………………iii List of Schemes vii List of Figures. viii List of Table ………………………………………………………………………..xvii Chapter 1.Introduction 1 1-1 Development of Vacuum Deposited Small Molecule Organic Solar Cells 1 1-2 Theory and Working Principles of Organic Solar Cell 4 1-3 Development of Organic-Inorganic Halide Perovskite Solar Cells 6 1-4 Theory and Working Principles of Organic-Inorganic Halide Perovskite Solar Cell 10 1-5 Thesis Organization 11 1-6 Figures 12 Chapter 2. Anisotropic Optical Properties and Molecular Orientation in Thin-Film of Copper Phthalocyanine and Copper Phthalocyanine:C60 Blends 14 2-1 Introduction 14 2-2 Experimental 16 2-3 Results and Discussions 18 2-4 Conclusions 20 2-5 Figures 21 2-6 Tables 25 Chapter 3. Morphology, Molecule Stacking, Dynamics and Device Performance Correlations in Vacuum-Deposited Small-Molecule Organic Solar Cells 26 3-1 Introduction 26 3-2 Experimental 28 3-3 Results and discussions 31 3-3-1. Device characterization 31 3-3-2. Optical characteristics 32 3-3-3. Surface morphology 33 3-3-4. Charge carrier mobility 34 3-3-5. Energetic and positional disorder 35 3-3-6. AC impedance measurement 36 3-3-7. Transient photovoltage and transient photocurrent measurements …………………………………………………………………..38 3-3-8. Recombination kinetics 39 3-3-9. Femtosecond transient absorption spectroscopic measurement 41 3-3-10. Grazing incidence wide-angle X-ray scattering 43 3-4 Conclusion 45 3-5 Figures 47 3-6 Tables 66 Chapter 4. Novel D-A and A-D-A Compounds Containing Cyanofuryl and Amine Groups: A New Class of Donor for Vacuum Deposited Organic Solar Cells 68 4-1 Introduction 68 4-2 Experimental 70 4-2-1. Synthesis and Materials 70 4-2-2. Solar cell fabrication and testing 70 4-3 Results and Discussions 72 4-4 Conclusion 78 4-5 Schemes 79 4-6 Figures 80 4-7 Tables 93 Chapter 5. Efficient and Uniform Planar-Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition 95 5-1 Introductions 95 5-2 Experimental 97 5-2-1. Device and thin-film preparation 97 5-2-2. Characterization 97 5-3 Results and Discussions 99 5-4 Conclusions 105 5-5 Schemes 106 5-6 Figures 107 5-7 Tables 119 Chapter 6. Optical Properties of Organometal Halide Perovskite Thin Films and General Device Structure Design Rules for Perovskite Single and Tandem Solar Cells 120 6-1 Introduction 120 6-2 Experimental 122 6-2-1. Perovskite thin-film preparation 122 6-2-2. Ellipsometry measurement 122 6-2-3. Optical simulation 124 6-3 Results and Discussions 125 6-4 Conclusion 134 6-5 Schemes 136 6-6 Figures 138 Chapter 7.Summary and Outlooks………………………………………………….156 Reference……………………………………………………………………………158

    [1] S. Gunes, H. Neugebauer, N. S. Sariciftci, Chemical reviews 2007, 107, 1324.
    [2] S. B. Darling, F. You, RSC Advances 2013, 3, 17633.
    [3] S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, A. J. Heeger, Nature Photonics 2009, 3, 297.
    [4] H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Nat Photon 2009, 3, 649.
    [5] Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, Advanced Materials 2010, 22, E135.
    [6] H. Zhou, L. Yang, A. C. Stuart, S. C. Price, S. Liu, W. You, Angewandte Chemie International Edition 2011, 50, 2995.
    [7] T.-Y. Chu, J. Lu, S. Beaupré, Y. Zhang, J.-R. Pouliot, S. Wakim, J. Zhou, M. Leclerc, Z. Li, J. Ding, Y. Tao, Journal of the American Chemical Society 2011, 133, 4250.
    [8] C. Risko, M. D. McGehee, J.-L. Bredas, Chemical Science 2011, 2, 1200.
    [9] D. Qian, W. Ma, Z. Li, X. Guo, S. Zhang, L. Ye, H. Ade, Z. a. Tan, J. Hou, Journal of the American Chemical Society 2013, 135, 8464.
    [10] A. K. K. Kyaw, D. H. Wang, D. Wynands, J. Zhang, T.-Q. Nguyen, G. C. Bazan, A. J. Heeger, Nano Letters 2013, 13, 3796.
    [11] Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Nat Photonics 2012, 6, 591.
    [12] Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, Y. Yang, Journal of the American Chemical Society 2014, 136, 622.
    [13] Y. Chen, X. Wan, G. Long, Accounts of Chemical Research 2013, 46, 2645.
    [14] Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, A. J. Heeger, Nat Mater 2012, 11, 44.
    [15] J. Zhou, X. Wan, Y. Liu, G. Long, F. Wang, Z. Li, Y. Zuo, C. Li, Y. Chen, Chemistry of Materials 2011, 23, 4666.
    [16] J. Zhou, X. Wan, Y. Liu, Y. Zuo, Z. Li, G. He, G. Long, W. Ni, C. Li, X. Su, Y. Chen, Journal of the American Chemical Society 2012, 134, 16345.
    [17] G. He, Z. Li, X. Wan, J. Zhou, G. Long, S. Zhang, M. Zhang, Y. Chen, Journal of Materials Chemistry A 2013, 1, 1801.
    [18] V. Gupta, A. K. K. Kyaw, D. H. Wang, S. Chand, G. C. Bazan, A. J. Heeger, Sci. Rep. 2013, 3.
    [19] J. Huang, C. Zhan, X. Zhang, Y. Zhao, Z. Lu, H. Jia, B. Jiang, J. Ye, S. Zhang, A. Tang, Y. Liu, Q. Pei, J. Yao, ACS Applied Materials & Interfaces 2013, 5, 2033.
    [20] H.-W. Lin, J.-H. Chang, W.-C. Huang, Y.-T. Lin, L.-Y. Lin, F. Lin, K.-T. Wong, H.-F. Wang, R.-M. Ho, H.-F. Meng, Journal of Materials Chemistry A 2014, 2, 3709.
    [21] P. Peumans, S. R. Forrest, Applied Physics Letters 2001, 79, 126.
    [22] J. Xue, S. Uchida, B. P. Rand, S. R. Forrest, Applied Physics Letters 2004, 85, 5757.
    [23] J. Xue, B. P. Rand, S. Uchida, S. R. Forrest, Advanced Materials 2005, 17, 66.
    [24] V. Steinmann, N. M. Kronenberg, M. R. Lenze, S. M. Graf, D. Hertel, K. Meerholz, H. Bürckstümmer, E. V. Tulyakova, F. Würthner, Advanced Energy Materials 2011, 1, 888.
    [25] A. K. Pandey, J.-M. Nunzi, Applied Physics Letters 2006, 89, 213506.
    [26] C.-W. Chen, Z.-Y. Huang, Y.-M. Lin, W.-C. Huang, Y.-H. Chen, J. Strzalka, A. Y. Chang, R. D. Schaller, C.-K. Lee, C.-W. Pao, H.-W. Lin, Physical Chemistry Chemical Physics 2014, 16, 8852.
    [27] Y.-H. Chen, C.-W. Chen, Z.-Y. Huang, K.-T. Wong, L.-Y. Lin, F. Lin, H.-W. Lin, Organic Electronics 2014, 15, 1828.
    [28] Heliatek, 2013.
    [29] C. W. Tang, Applied Physics Letters 1986, 48, 183.
    [30] N. M. Kronenberg, M. Deppisch, F. Wurthner, H. W. Lademann, K. Deing, K. Meerholz, Chem Commun (Camb) 2008, 6489.
    [31] M. Hirade, C. Adachi, Applied Physics Letters 2011, 99.
    [32] X. Xiao, J. D. Zimmerman, B. E. Lassiter, K. J. Bergemann, S. R. Forrest, Applied Physics Letters 2013, 102.
    [33] G. Chen, H. Sasabe, Z. Wang, X.-F. Wang, Z. Hong, Y. Yang, J. Kido, Advanced Materials 2012, 24, 2768.
    [34] A. Mishra, C. Uhrich, E. Reinold, M. Pfeiffer, P. Bauerle, Advanced Energy Materials 2011, 1, 265.
    [35] R. Fitzner, E. Mena-Osteritz, A. Mishra, G. Schulz, E. Reinold, M. Weil, C. Körner, H. Ziehlke, C. Elschner, K. Leo, M. Riede, M. Pfeiffer, C. Uhrich, P. Bäuerle, Journal of the American Chemical Society 2012, 134, 11064.
    [36] L.-Y. Lin, Y.-H. Chen, Z.-Y. Huang, H.-W. Lin, S.-H. Chou, F. Lin, C.-W. Chen, Y.-H. Liu, K.-T. Wong, Journal of the American Chemical Society 2011, 133, 15822.
    [37] S.-W. Chiu, L.-Y. Lin, H.-W. Lin, Y.-H. Chen, Z.-Y. Huang, Y.-T. Lin, F. Lin, Y.-H. Liu, K.-T. Wong, Chemical Communications 2012, 48, 1857.
    [38] Y.-H. Chen, L.-Y. Lin, C.-W. Lu, F. Lin, Z.-Y. Huang, H.-W. Lin, P.-H. Wang, Y.-H. Liu, K.-T. Wong, J. Wen, D. J. Miller, S. B. Darling, Journal of the American Chemical Society 2012, 134, 13616.
    [39] N.-G. Park, Materials Today 2014, DOI: 10.1016/j.mattod.2014.07.007
    [40] Y. Zhao, K. Zhu, The Journal of Physical Chemistry Letters 2013, 4, 2880.
    [41] J.-Y. Jeng, Y.-F. Chiang, M.-H. Lee, S.-R. Peng, T.-F. Guo, P. Chen, T.-C. Wen, Advanced Materials 2013, 25, 3727.
    [42] W.-J. Yin, T. Shi, Y. Yan, Applied Physics Letters 2014, 104.
    [43] B. O'Regan, M. Gratzel, Nature 1991, 353, 737.
    [44] B. E. Hardin, H. J. Snaith, M. D. McGehee, Nat Photon 2012, 6, 162.
    [45] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Journal of the American Chemical Society 2009, 131, 6050.
    [46] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, Nanoscale 2011, 3, 4088.
    [47] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Gratzel, N.-G. Park, Sci. Rep. 2012, 2.
    [48] L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, M. Grätzel, Journal of the American Chemical Society 2012, 134, 17396.
    [49] J. M. Ball, M. M. Lee, A. Hey, H. J. Snaith, Energy & Environmental Science 2013, 6, 1739.
    [50] M. Liu, M. B. Johnston, H. J. Snaith, Nature 2013, 501, 395.
    [51] O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, H. J. Bolink, Nat Photon 2014, 8, 128.
    [52] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Gratzel, Nature 2013, 499, 316.
    [53] Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, Y. Yang, Journal of the American Chemical Society 2013, 136, 622.
    [54] M. R. Leyden, L. K. Ono, S. R. Raga, Y. Kato, S. Wang, Y. Qi, Journal of Materials Chemistry A 2014.
    [55] H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 2014, 345, 542.
    [56] N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, H. J. Snaith, Energy & Environmental Science 2014, 7, 3061.
    [57] F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, M. G. Kanatzidis, Nat Photon 2014, 8, 489.
    [58] M. Hirasawa, T. Ishihara, T. Goto, Journal of the Physical Society of Japan 1994, 63, 3870.
    [59] I. B. Koutselas, L. Ducasse, G. C. Papavassiliou, Journal of Physics: Condensed Matter 1996, 8, 1217.
    [60] M. Hirasawa, T. Ishihara, T. Goto, K. Uchida, N. Miura, Physica B: Condensed Matter 1994, 201, 427.
    [61] K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, N. Miura, Solid State Communications 2003, 127, 619.
    [62] T. Ishihara, Journal of Luminescence 1994, 60–61, 269.
    [63] S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sum, Y. M. Lam, Energy & Environmental Science 2014, 7, 399.
    [64] T. C. Sum, N. Mathews, Energy & Environmental Science 2014, 7, 2518.
    [65] S. Günes, H. Neugebauer, N. S. Sariciftci, Chemical reviews 2007, 107, 1324.
    [66] D. Yokoyama, C. Adachi, Journal of Applied Physics 2010, 107.
    [67] D. Yokoyama, A. Sakaguchi, M. Suzuki, C. Adachi, Applied Physics Letters 2008, 93, 173302.
    [68] H.-W. Lin, C.-L. Lin, H.-H. Chang, Y.-T. Lin, C.-C. Wu, Y.-M. Chen, R.-T. Chen, Y.-Y. Chien, K.-T. Wong, Journal of Applied Physics 2004, 95, 881.
    [69] B. Bräuer, M. Fronk, D. Lehmann, D. R. T. Zahn, G. Salvan, The Journal of Physical Chemistry B 2009, 113, 14957.
    [70] J. S. Louis, D. Lehmann, M. Friedrich, D. R. T. Zahn, Journal of Applied Physics 2007, 101.
    [71] L. Ding, M. Friedrich, O. D. Gordan, D. R. T. Zahn, Journal of Vacuum Science & Technology B 2010, 28, C5F17.
    [72] L. Ding, C. Himcinschi, M. Friedrich, D. R. T. Zahn, physica status solidi (c) 2010, 7, 312.
    [73] O. D. Gordan, M. Friedrich, D. R. T. Zahn, Organic Electronics 2004, 5, 291.
    [74] B. D. Aleksandra, F. Torsten, L. Karl, Journal of Optics A: Pure and Applied Optics 2000, 2, 458.
    [75] Y. Wu, D. Gu, F. Gan, Optical Materials 2003, 24, 477.
    [76] E. G. Bortchagovsky, Z. I. Kazantseva, I. A. Koshets, S. Nešpůrek, L. Jastrabik, Thin Solid Films 2004, 460, 269.
    [77] A. B. Djurišić, C. Y. Kwong, T. W. Lau, W. L. Guo, E. H. Li, Z. T. Liu, H. S. Kwok, L. S. M. Lam, W. K. Chan, Optics Communications 2002, 205, 155.
    [78] H. W. Lin, C. L. Lin, C. C. Wu, T. C. Chao, K. T. Wong, Organic Electronics 2007, 8, 189.
    [79] E. A. Lucia, F. D. Verderame, The Journal of Chemical Physics 1968, 48, 2674.
    [80] A. Henriksson, M. Sundbom, Theoret. Chim. Acta 1972, 27, 213.
    [81] D. Yokoyama, Y. Setoguchi, A. Sakaguchi, M. Suzuki, C. Adachi, Advanced Functional Materials 2010, 20, 386.
    [82] D. Wynands, M. Levichkova, K. Leo, C. Uhrich, G. Schwartz, D. Hildebrandt, M. Pfeiffer, M. Riede, Applied Physics Letters 2010, 97, 073503.
    [83] L.-Y. Lin, C.-W. Lu, W.-C. Huang, Y.-H. Chen, H.-W. Lin, K.-T. Wong, Organic Letters 2011, 13, 4962.
    [84] S. Steinberger, A. Mishra, E. Reinold, C. M. Muller, C. Uhrich, M. Pfeiffer, P. Bauerle, Organic Letters 2011, 13, 90.
    [85] S. Roquet, A. Cravino, P. Leriche, O. Alévêque, P. Frère, J. Roncali, Journal of the American Chemical Society 2006, 128, 3459.
    [86] H. Kageyama, H. Ohishi, M. Tanaka, Y. Ohmori, Y. Shirota, Advanced Functional Materials 2009, 19, 3948.
    [87] S. Wang, E. I. Mayo, M. D. Perez, L. Griffe, G. Wei, P. I. Djurovich, S. R. Forrest, M. E. Thompson, Applied Physics Letters 2009, 94, 233304.
    [88] H.-W. Lin, S.-W. Chiu, L.-Y. Lin, Z.-Y. Hung, Y.-H. Chen, F. Lin, K.-T. Wong, Advanced Materials 2012, 24, 2269.
    [89] N. M. Kronenberg, V. Steinmann, H. Bürckstümmer, J. Hwang, D. Hertel, F. Würthner, K. Meerholz, Advanced Materials 2010, 22, 4193.
    [90] S. Yoo, B. Domercq, B. Kippelen, Applied Physics Letters 2004, 85, 5427.
    [91] S. Yoo, W. J. Potscavage Jr, B. Domercq, S.-H. Han, T.-D. Li, S. C. Jones, R. Szoszkiewicz, D. Levi, E. Riedo, S. R. Marder, B. Kippelen, Solid-State Electronics 2007, 51, 1367.
    [92] D. Cheyns, H. Gommans, M. Odijk, J. Poortmans, P. Heremans, Solar Energy Materials and Solar Cells 2007, 91, 399.
    [93] D. Yokoyama, Z. Qiang Wang, Y.-J. Pu, K. Kobayashi, J. Kido, Z. Hong, Solar Energy Materials and Solar Cells 2012, 98, 472.
    [94] M. C. Barr, R. M. Howden, R. R. Lunt, V. Bulović, K. K. Gleason, Advanced Energy Materials 2012, 2, 1404.
    [95] Z. Wang, D. Yokoyama, X.-F. Wang, Z. Hong, Y. Yang, J. Kido, Energy & Environmental Science 2013, 6, 249.
    [96] M. Hirade, T. Yasuda, C. Adachi, The Journal of Physical Chemistry C 2013, 117, 4986.
    [97] Z. Jiang, X. Li, J. Strzalka, M. Sprung, T. Sun, A. R. Sandy, S. Narayanan, D. R. Lee, J. Wang, Journal of Synchrotron Radiation 2012, 19, 627.
    [98] M. Hirade, H. Nakanotani, M. Yahiro, C. Adachi, ACS Applied Materials & Interfaces 2010, 3, 80.
    [99] H.-Y. Lin, W.-C. Huang, Y.-C. Chen, H.-H. Chou, C.-Y. Hsu, J. T. Lin, H.-W. Lin, Chemical Communications 2012, 48, 8913.
    [100] H. Shang, H. Fan, Y. Liu, W. Hu, Y. Li, X. Zhan, Advanced Materials 2011, 23, 1554.
    [101] G. D. Wei, S. Y. Wang, K. Sun, M. E. Thompson, S. R. Forrest, Advanced Energy Materials 2011, 1, 184.
    [102] G. Wei, S. Wang, K. Renshaw, M. E. Thompson, S. R. Forrest, ACS Nano 2010, 4, 1927.
    [103] W. Brütting, S. Berleb, A. G. Mückl, Synthetic Metals 2001, 122, 99.
    [104] T.-Y. Chu, O.-K. Song, Applied Physics Letters 2007, 90, 203512.
    [105] H. Bässler, physica status solidi (b) 1993, 175, 15.
    [106] S. V. Novikov, D. H. Dunlap, V. M. Kenkre, P. E. Parris, A. V. Vannikov, Physical Review Letters 1998, 81, 4472.
    [107] D. Hertel, H. Bassler, U. Scherf, H. H. Horhold, The Journal of Chemical Physics 1999, 110, 9214.
    [108] H. H. Fong, K. C. Lun, S. K. So, Chemical Physics Letters 2002, 353, 407.
    [109] J. You, C.-C. Chen, L. Dou, S. Murase, H.-S. Duan, S. A. Hawks, T. Xu, H. J. Son, L. Yu, G. Li, Y. Yang, Advanced Materials 2012, 24, 5267.
    [110] T. Kuwabara, C. Iwata, T. Yamaguchi, K. Takahashi, ACS Applied Materials & Interfaces 2010, 2, 2254.
    [111] S. Ishihara, H. Hase, T. Okachi, H. Naito, Journal of Applied Physics 2011, 110, 036104.
    [112] Q. Wang, J.-E. Moser, M. Grätzel, The Journal of Physical Chemistry B 2005, 109, 14945.
    [113] L. Han, N. Koide, Y. Chiba, T. Mitate, Applied Physics Letters 2004, 84, 2433.
    [114] J. Bisquert, M. Grätzel, Q. Wang, F. Fabregat-Santiago, The Journal of Physical Chemistry B 2006, 110, 11284.
    [115] C.-C. Hsiao, A.-E. Hsiao, S.-A. Chen, Advanced Materials 2008, 20, 1982.
    [116] A. Pitarch, G. Garcia-Belmonte, J. Bisquert, H. J. Bolink, Journal of Applied Physics 2006, 100, 084502.
    [117] S. Ishihara, H. Hase, T. Okachi, H. Naito, Organic Electronics 2011, 12, 1364.
    [118] F. Fabregat-Santiago, G. Garcia-Belmonte, I. Mora-Sero, J. Bisquert, Physical Chemistry Chemical Physics 2011, 13, 9083.
    [119] P. P. Boix, A. Guerrero, L. F. Marchesi, G. Garcia-Belmonte, J. Bisquert, Advanced Energy Materials 2011, 1, 1073.
    [120] B. J. Leever, C. A. Bailey, T. J. Marks, M. C. Hersam, M. F. Durstock, Advanced Energy Materials 2012, 2, 120.
    [121] H.-W. Lin, C.-W. Lu, L.-Y. Lin, Y.-H. Chen, W.-C. Lin, K.-T. Wong, F. Lin, Journal of Materials Chemistry A 2013, 1, 1770.
    [122] M. Glatthaar, M. Riede, N. Keegan, K. Sylvester-Hvid, B. Zimmermann, M. Niggemann, A. Hinsch, A. Gombert, Solar Energy Materials and Solar Cells 2007, 91, 390.
    [123] C. G. Shuttle, B. O'Regan, A. M. Ballantyne, J. Nelson, D. D. C. Bradley, J. de Mello, J. R. Durrant, Applied Physics Letters 2008, 92, 093311.
    [124] R. Hamilton, C. G. Shuttle, B. O’Regan, T. C. Hammant, J. Nelson, J. R. Durrant, The Journal of Physical Chemistry Letters 2010, 1, 1432.
    [125] D. Credgington, R. Hamilton, P. Atienzar, J. Nelson, J. R. Durrant, Advanced Functional Materials 2011, 21, 2744.
    [126] Y.-S. Kim, T. Kim, B. Kim, D.-K. Lee, H. Kim, B.-K. Ju, K. Kim, Organic Electronics 2013, 14, 1749.
    [127] L. J. A. Koster, V. D. Mihailetchi, P. W. M. Blom, Applied Physics Letters 2006, 88, 052104.
    [128] M. M. Mandoc, L. J. A. Koster, P. W. M. Blom, Applied Physics Letters 2007, 90, 133504.
    [129] R. A. Street, M. Schoendorf, A. Roy, J. H. Lee, Physical Review B 2010, 81, 205307.
    [130] T. M. Clarke, J. R. Durrant, Chemical reviews 2010, 110, 6736.
    [131] S. Shoaee, M. P. Eng, E. Espildora, J. L. Delgado, B. Campo, N. Martin, D. Vanderzande, J. R. Durrant, Energy & Environmental Science 2010, 3, 971.
    [132] D. R. Lawson, D. L. Feldheim, C. A. Foss, P. K. Dorhout, C. M. Elliott, C. R. Martin, B. Parkinson, Journal of The Electrochemical Society 1992, 139, L68.
    [133] W. Chen, M. P. Nikiforov, S. B. Darling, Energy & Environmental Science 2012, 5, 8045.
    [134] W.-R. Wu, U. S. Jeng, C.-J. Su, K.-H. Wei, M.-S. Su, M.-Y. Chiu, C.-Y. Chen, W.-B. Su, C.-H. Su, A.-C. Su, ACS Nano 2011, 5, 6233.
    [135] H.-C. Liao, C.-S. Tsao, T.-H. Lin, C.-M. Chuang, C.-Y. Chen, U. S. Jeng, C.-H. Su, Y.-F. Chen, W.-F. Su, Journal of the American Chemical Society 2011, 133, 13064.
    [136] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw, Nature 1999, 401, 685.
    [137] M.-S. Su, C.-Y. Kuo, M.-C. Yuan, U. S. Jeng, C.-J. Su, K.-H. Wei, Advanced Materials 2011, 23, 3315.
    [138] N. D. Eisenmenger, G. M. Su, G. C. Welch, C. J. Takacs, G. C. Bazan, E. J. Kramer, M. L. Chabinyc, Chemistry of Materials 2013, 25, 1688.
    [139] W. Chen, T. Xu, F. He, W. Wang, C. Wang, J. Strzalka, Y. Liu, J. Wen, D. J. Miller, J. Chen, K. Hong, L. Yu, S. B. Darling, Nano Letters 2011, 11, 3707.
    [140] A. Sutter, P. Retailleau, W.-C. Huang, H.-W. Lin, R. Ziessel, New Journal of Chemistry 2014, 38, 1701.
    [141] B. Walker, C. Kim, T.-Q. Nguyen, Chemistry of Materials 2010, 23, 470.
    [142] H.-W. Lin, L.-Y. Lin, Y.-H. Chen, C.-W. Chen, Y.-T. Lin, S.-W. Chiu, K.-T. Wong, Chemical Communications 2011, 47, 7872.
    [143] H.-C. Ting, Y.-H. Chen, L.-Y. Lin, S.-H. Chou, Y.-H. Liu, H.-W. Lin, K.-T. Wong, ChemSusChem 2014, 7, 457.
    [144] R. Fitzner, E. Reinold, A. Mishra, E. Mena-Osteritz, H. Ziehlke, C. Körner, K. Leo, M. Riede, M. Weil, O. Tsaryova, A. Weiß, C. Uhrich, M. Pfeiffer, P. Bäuerle, Advanced Functional Materials 2011, 21, 897.
    [145] S. Steinberger, A. Mishra, E. Reinold, C. M. Müller, C. Uhrich, M. Pfeiffer, P. Bäuerle, Organic Letters 2010, 13, 90.
    [146] J. Ah Kong, E. Lim, K. K. Lee, S. Lee, S. Hyun Kim, Solar Energy Materials and Solar Cells 2010, 94, 2057.
    [147] S. Steinberger, A. Mishra, E. Reinold, J. Levichkov, C. Uhrich, M. Pfeiffer, P. Bauerle, Chemical Communications 2011, 47, 1982.
    [148] J. H. Seo, Synthetic Metals 2012, 162, 748.
    [149] A. Leliège, P. Blanchard, T. o. Rousseau, J. Roncali, Organic Letters 2011, 13, 3098.
    [150] M. J. Cho, J. Seo, H. S. Oh, H. Jee, W. J. Kim, K. H. Kim, M. H. Hoang, D. H. Choi, P. N. Prasad, Solar Energy Materials and Solar Cells 2012, 98, 71.
    [151] H.-W. Lin, H.-W. Kang, Z.-Y. Huang, C.-W. Chen, Y.-H. Chen, L.-Y. Lin, F. Lin, K.-T. Wong, Organic Electronics 2012, 13, 1925.
    [152] P. Peumans, A. Yakimov, S. R. Forrest, Journal of Applied Physics 2003, 93, 3693.
    [153] T.-M. Kim, H.-S. Shim, M.-S. Choi, H. J. Kim, J.-J. Kim, ACS Applied Materials & Interfaces 2014, 6, 4286.
    [154] J. C. Wang, X. C. Ren, S. Q. Shi, C. W. Leung, P. K. L. Chan, Organic Electronics 2011, 12, 880.
    [155] W. Tress, K. Leo, M. Riede, Advanced Functional Materials 2011, 21, 2140.
    [156] W. Tress, A. Petrich, M. Hummert, M. Hein, K. Leo, M. Riede, Applied Physics Letters 2011, 98.
    [157] A. Kumar, S. Sista, Y. Yang, Journal of Applied Physics 2009, 105.
    [158] G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, H. J. Snaith, Advanced Functional Materials 2014, 24, 151.
    [159] B. Conings, L. Baeten, C. De Dobbelaere, J. D'Haen, J. Manca, H. G. Boyen, Advanced Materials 2014, 26, 2041.
    [160] P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, A. K. Jen, Advanced Materials 2014.
    [161] A. Yella, L. P. Heiniger, P. Gao, M. K. Nazeeruddin, M. Grätzel, Nano Letters 2014, 14, 2591.
    [162] J. Y. Jeng, K. C. Chen, T. Y. Chiang, P. Y. Lin, T. D. Tsai, Y. C. Chang, T. F. Guo, P. Chen, T. C. Wen, Y. J. Hsu, Advanced Materials 2014.
    [163] D. Bi, S.-J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, A. Hagfeldt, RSC Advances 2013, 3, 18762.
    [164] Y. Ma, L. Zheng, Y. H. Chung, S. Chu, L. Xiao, Z. Chen, S. Wang, B. Qu, Q. Gong, Z. Wu, X. Hou, Chem Commun (Camb) 2014.
    [165] K. Liang, D. B. Mitzi, M. T. Prikas, Chem. Mater. 1998, 10, 403.
    [166] H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski, W. Zhang, The Journal of Physical Chemistry Letters 2014, 5, 1511.
    [167] Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, J. Huang, Energy & Environmental Science 2014.
    [168] T. E. Tiwald, D. W. Thompson, J. A. Woollam, W. Paulson, R. Hance, Thin Solid Films 1998, 313–314, 661.
    [169] Y. S. Jung, Thin Solid Films 2004, 467, 36.
    [170] R. A. Synowicki, Thin Solid Films 1998, 313–314, 394.
    [171] L. A. A. Pettersson, T. Johansson, F. Carlsson, H. Arwin, O. Inganäs, Synthetic Metals 1999, 101, 198.
    [172] J. G. E. Jellison, Thin Solid Films 1998, 313–314, 33.
    [173] K. Järrendahl, H. Arwin, Thin Solid Films 1998, 313–314, 114.
    [174] C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, W. Paulson, Journal of Applied Physics 1998, 83, 3323.
    [175] C. M. Herzinger, H. Yao, P. G. Snyder, F. G. Celii, Y. C. Kao, B. Johs, J. A. Woollam, Journal of Applied Physics 1995, 77, 4677.
    [176] D. E. Aspnes, J. B. Theeten, F. Hottier, Physical Review B 1979, 20, 3292.
    [177] H. Fujiwara, J. Koh, P. I. Rovira, R. W. Collins, Physical Review B 2000, 61, 10832.
    [178] G. E. Jellison, M. F. Chisholm, S. M. Gorbatkin, Applied Physics Letters 1993, 62, 3348.
    [179] P. D. Paulson, R. W. Birkmire, W. N. Shafarman, Journal of Applied Physics 2003, 94, 879.
    [180] S. Adachi, Journal of Applied Physics 1989, 66, 6030.
    [181] S. Adachi, T. Kimura, N. Suzuki, Journal of Applied Physics 1993, 74, 3435.
    [182] Y.-H. Chen, C.-W. Chen, Z.-Y. Huang, W.-C. Lin, L.-Y. Lin, F. Lin, K.-T. Wong, H.-W. Lin, Advanced Materials 2014, 26, 1129.
    [183] J.-H. Chang, H.-F. Wang, W.-C. Lin, K.-M. Chiang, K.-C. Chen, W.-C. Huang, Z.-Y. Huang, H.-F. Meng, R.-M. Ho, H.-W. Lin, Journal of Materials Chemistry A 2014, 2, 13398.
    [184] L. A. A. Pettersson, L. S. Roman, O. Inganäs, Journal of Applied Physics 1999, 86, 487.
    [185] C. Yasuo, I. Ashraful, W. Yuki, K. Ryoichi, K. Naoki, H. Liyuan, Japanese Journal of Applied Physics 2006, 45, L638.
    [186] V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, Y. Yang, Applied Physics Letters 2006, 88, 073508.
    [187] S. Han, W. S. Shin, M. Seo, D. Gupta, S.-J. Moon, S. Yoo, Organic Electronics 2009, 10, 791.
    [188] M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chemical reviews 2010, 110, 6446.
    [189] J. R. Bolton, Solar Energy 1996, 57, 37.
    [190] X. Wang, E. Perzon, J. L. Delgado, P. de la Cruz, F. Zhang, F. Langa, M. Andersson, O. Inganäs, Applied Physics Letters 2004, 85, 5081.
    [191] M. Hiramoto, K. Kitada, K. Iketaki, T. Kaji, Applied Physics Letters 2011, 98, 023302.
    [192] P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, M. Powalla, physica status solidi (RRL) – Rapid Research Letters 2014, 8, 219.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE