簡易檢索 / 詳目顯示

研究生: 游易青
Yu Yi-Ching
論文名稱: high-k材料應用於閘極氧化層對奈米晶記憶體電性之影響
指導教授: 吳泰伯
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 88
中文關鍵詞: high-k奈米晶記憶體
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    奈米晶記憶體之構想是在1996年IBM公司研究團隊所提出,最早是採用在SiO2介電層中插入奈米尺度的矽晶顆粒陣列,後來考慮到奈米晶粒所形成的量子井矽基版之能階差問題,建議改為Ge或金屬奈米粒子,另外有關介電層材料,也有人提議採用high-k氧化物來取代SiO2。有關在SiO2中製作半導體(Si,Ge)或金屬(Au,Pt,W等)奈米晶粒夾層技術,大多採用化學氣相沉積、離子植入、電子束沉積或共鍍等方法。這些製程技術雖然各見優點,但有一共同缺點就是製作出來的奈米粒子的粒徑較大,分佈也較不均勻。
    在實驗室的研究之下,發現以磁控濺鍍白金,若在Ar電漿中加入氧氣,會鍍出PtOx薄膜,此PtOx薄膜並不穩定,會在中溫(300~500℃)熱處理下還原分解回純白金,而利用PtOx之化學不穩定性,以RF濺鍍在MOS結構的閘極介電層中插鍍一層超微PtOx,再以熱處理還原成粒徑在2~3nm之白金奈米粒子陣列,此PtOx超微薄膜是以自組裝方式分解成白金奈米晶陣列,粒子大小與分佈相當均勻。
    除了奈米晶粒之大小與分佈外,控制層與穿隧層的材料與結構,亦會對奈米晶記憶體的功能,包括記憶持久性及存取速度,操作電壓等會有很大的影響,在我的論文當中將探討閘極介電層材料結構的影響。奈米晶記憶體的結構為電極/控制層/奈米晶/穿隧層/基版通道,此MOS電容可視為控制層電容Cco與穿隧層電容Cto串聯,由於奈米晶之充放電取決於穿隧層所受電壓,而此電壓Vto與施加於閘極的電壓Vg的關係為Vto=Vg.Cco/(Cco+Cto),因此在同樣的介電層厚度下,採用較高介電係數的控制層材料,對特定的Vto,所需的Vg較低,固有利於操作電壓的降低,同時也將比較不同閘極材料下,對於漏電流的影響,及對於侷限電子的持久性(retention)的比較。


    目錄 表目錄 圖目錄 誌謝………………………………………………………………………1 第一章 簡介…………………………………………………………... 3 第二章 文獻回顧……………………………………………………... 7 2.1 記憶體簡介……………………………………………………….. 7 2.1.1 機械性記憶體…………………………………………………... 7 2.1.2 半導體記憶體…………………………………………………... 7 2.2 半導體記憶體概述……………………………………………….. 8 2.2.1 半導體記憶體性能考量因素…………………………………... 8 2.2.2 非揮發性半導體記憶體………………………………………... 9 2.3 奈米晶記憶體…………………………………………………… 11 2.3.1 Si奈米晶記憶體的理論………………………………………. 11 2.3.2 金屬奈米晶記憶體……………………………………………. 12 2.3.3 其他奈米晶結構………………………………………………. 13 2.3.3.1 雙層奈米晶………………………………………………….. 13 2.3.3.2 矽奈米晶在Oxide-Nitride 介電層中………………………. 13 2.4 單電子記憶體…………………………………………………… 14 2.4.1 單電子電晶體基本原理………………………………………. 14 2.5 high-k材料閘極氧化層的應用…………………………………. 16 2.6 MOS元件………………………………………………………... 17 2.6.1 基本操作原理:累積、空乏、反轉……………………………. 17 2.6.2 平帶電壓………………………………………………………. 18 第三章 實驗流程……………………………………………………. 31 3.1 元件製作………………………………………………………. ...31 3.1.1 RCA Clean……………………………………………………… 31 3.1.2 Back-side Ion Implantation ……………………………………...31 3.1.3 Dry Thermal Oxidation ………………………………………….32 3.1.4 PtOx薄膜……………………………………………………….. 32 3.1.5 閘極氧化層製作………………………………………………... 32 3.1.6 白金粒子的製作………………………………………………... 33 3.1.7 電極製作………………………………………………………... 33 3.2 分析與量測……………………………………………………… 33 3.2.1 微結構觀測……………………………………………………... 33 3.2.2 電性量測………………………………………………………... 33 第四章 SiO2閘極氧化層對白金奈米晶記憶體電性的影響……… 40 4.1 SiO2簡介………………………………………………………... 40 4.2 從C-V量測中比較記憶特性(儲存電荷能力) …………………40 4.3 操作電壓比較…………………………………………………… 41 第五章 high-k閘極氧化層(氧化鋁、氧化鋯)對於白金奈米晶記憶體 的影響…………………………………………………………. 47 5.1 簡介……………………………………………………………… 47 5.2 白金奈米粒的自組裝…………………………………………… 47 5.3 高介電常數材料閘極氧化層…………………………………… 48 5.3.1 Al2O3簡介…………………………………………………… ...49 5.3.2 ZrO2簡介……………………………………………………… ..49 5.4 high-k材料閘極氧化層對白金奈米晶記憶體電性的影響與比較 ………………………………………………………………...49 5.4.1 從C-V量測中比較記憶特性(儲存電荷能力) …………………50 5.4.2 電流對電壓的特性……………………………………………. ..52 5.4.3 閘極電壓的影響……………………………………………… ...54 5.4.4 量測頻率對平帶電壓的影響………………………………….. .56 5.4.5 持久性量測……………………………………………………. 56 5.5 結論……………………………………………………………… 57 第六章 結論……………………………………………………….. …...81 表目錄 附表2.1 各種記憶體的比較…………………………………………30 附表3.1 Sputtering conditions of the PtOx layer and gate oxide……..35附表3.2 annealing condition in furnace………………………………35 附表3.3 sputtering conditions of Au top electrode…………………...35 附表4.1 (a)鍍製PtOx、SiO2的鍍膜參數(b)退火條件(c)鍍製白金上電極鍍膜參數…………………………………………………..46 附表5.1 (a) 氧化鋁閘極內的白金奈米粒子尺寸分佈圖(b)氧化鋯閘極內的白金奈米粒子尺寸分佈……………………….....................62 圖目錄 圖1.1 SiO2/Si3N4/SiO2介電層(SONS),利用Si3N4層內之缺陷來儲存 電子………………………………………………………………6 圖1.2 將整層的懸浮閘極改為奈米晶陣列,即所謂的奈米晶記憶體…6 圖2.1 CMOS SRAM單元陣列……………………………………….19 圖2.2 一電容的DRAM單元的等效電路…………………………….19 圖2.3快閃式單元之熱載子程式寫入(a)快閃式記憶體單元結構加上一般寫入至單元所需的偏壓,MOSFET在飽和區石通道被夾止 (b)沿MOSFET通道中間垂直切線之能帶圖,顯示在通道中的熱載子通過閘極氧化層而陷入浮動閘極中………………………20 圖2.4 福勞諾頓穿隧擦拭(a)快閃式記憶體單元結構,加上典型擦拭所需之偏壓(b)對應MOSFET閘極/源極重疊區深度的能帶圖,顯示載子在浮動閘極發生量子力學穿隧進入氧化層,然後漂移至源極………………………………………………………………20 圖2.5 奈米晶記憶體的側視圖……………………………………….21 圖2.6 奈米晶記憶體的發展圖表…………………………………….21 圖2.7 Si奈米晶記憶體…………………………………………………22 圖2.8由於電子或是電動由基板注入奈米晶內造成一逆時針的遲滯曲線…………………………………………………………………22 圖2.9 由臨界電壓的改變看出電子或是電洞的trap…………………23 圖2.10在MOS結構中各種不同功函數的金屬奈米晶形成的能帶圖,其中以白金具有最大的功函數,而形成最深的位能井………...24 圖2.11在2000年,Toshiba提出雙層自組裝奈米晶記憶體…………..25 圖2.12 單電子電晶體的基本電路,除源極、汲極、閘極外,尚有一量子點,在量子點兩端則為極微小的穿透性接合………………...26 圖2.13 施以閘極電壓後的單電子電晶體等效電路示意圖………….26 圖2.14 庫倫阻斷之IV特性,當電壓值介於負臨界電壓Vc=-e2/2C和正臨界電壓Vc=e2/2C時,電流值因電子被鎖住而為零,當電壓增加到大於臨界電壓Vc,能量障壁消除,而電子可穿隧能量障壁,而電流也因所施加的電壓而增加……………………………27 圖2.15(a)階梯式臨界電壓 (b)導電性與閘極電壓的關係…………...27 圖2.16 理想MOS結構的能帶圖:(a)平衡時(b)負偏壓造成電洞堆積在P-type半導體表面(c)正偏壓將電洞從P-type半導體表面推開,行程空乏區(d)很大的正偏壓使P-type半導體表面形成反轉,也就是P-type半導體表面形成n型薄層………………..28 圖 2.17強反轉開始時,半導體能帶的彎曲:表面電位φs是中性P-type材料中之φF值的兩倍……………………………………….28 圖2.18 負功函數電位差的影響(a)在半導體表面處的能帶變曲及負電荷的形成(b)加上一個負電壓,以達到平坦能帶…………..29 圖2.19 在p-type MOS結構當中Qi在C-V上的影響…………..29 圖3.1 schematic cross-section of the Pt nanocrystal nonvolatile memory in this research…………………………………………………36 圖3.2 製作流程………………………………………………………...37 圖3.3 射頻濺鍍機系統………………………………………………...38 圖3.4 電性分析量測表……………………………………………….39 圖4.1 SiO2閘極氧化層之白金奈米晶記憶體測視圖……………….43 圖4.2 18nm SiO2在±8V操作電壓下的CV圖………………………44 圖4.3 24nm SiO2在±8V操作電壓下的CV圖………………………44 圖4.4 18nm SiO2在±2V操作電壓下的CV圖………………………45 圖5.1 利用high-k材料取代閘極氧化層之白金奈米晶記憶體……...59 圖5.2 氧化鋯閘極氧化層內的白金氧粒子,cross-section…………….60 圖5.3 氧化鋯閘極氧化物內的白金粒子TEM圖,plane view………..60 圖5.4 Al2O3閘極氧化層之白金奈米粒記憶體TEM 平面圖………..61 圖5.5 氧化鋁空片與有埋白金粒子試片的高頻(1MHz)CV量測圖…63 圖5.6 氧化鋯空片與有埋白金粒子試片的高頻(1MHz)CV量測圖…63 圖5.7 埋有白金奈米粒子的氧化鋁與氧化鋯閘極奈米晶記憶體高頻(1MHz)量測CV圖……………………………………………..64 圖5.8 (a)施加正偏壓時(反轉區)(b)施加負偏壓時(累積區)儲存電荷的機制………………………………………………………………65 圖5.9(a)施加正偏壓時(寫入)電子由Si基板直接穿隧過穿隧氧化層,陷入白金氧粒子內的能帶圖…………………………………....66 圖5.9(b)施加負偏壓時(拭除),電子由白金奈米粒detrapping到Si基板,也可視為電洞穿隧過穿隧氧化層進入白金奈米粒子,能帶表示圖…………………………………………………………………67 圖5.10 SiO2閘極氧化層奈米晶記憶體的漏電流對電壓圖………….68 圖5.11 氧化鋁閘極的白金奈米晶記憶體之漏電流對電壓圖 (a) 由積累區到反轉區,有負的turn-around voltage(b)由反轉區到積累區,有正的turn-around voltage……………………….............69 圖5.11 氧化鋁空片的電流對電壓變化圖(a)積累區到反轉區(b)反轉區到積累區,turn-around voltage均接近0………………………..70 圖5.12氧化鋯閘極氧化層白金奈米晶記憶體漏電流對電壓圖(a)由積累區到反轉區,有負的turn-ariund voltage(b)由反轉區到積累區,有正的turn-around voltage……………………………………..71 圖5.12 氧化鋯空片的漏電流對電壓圖(c)積累區到反轉區(d)反轉區到積累區,turn-around voltage均接近0………………………….72 圖5.13 (a)氧化鋁閘極氧化層奈米晶記憶體單位面積儲存電荷量隨閘極電壓變化圖(b)氧化鋯閘極氧化層奈米晶記憶體單位面積儲存電荷隨閘極電壓變化圖……………………………73 圖5.14 (a)氧化鋁閘極氧化層奈米晶記憶體,平帶電壓對閘極電壓變化圖(b)氧化鋯閘極氧化層奈米晶記憶體,平帶電壓對閘極電壓變化圖……………………………………………………….74 圖5.15.(a)氧化鋁閘極(b)氧化鋯閘極奈米晶記憶體之正負平帶電壓隨著閘極電壓的變化圖………………………………………..75 圖5.16 (a)氧化鋁試片所捕捉之電子或是電洞隨施加閘極電壓改變(b)氧化鋯試片所捕捉之電子或是電洞隨施加的閘極電壓改變………………………………………………………………76 圖5.17 庫倫阻塞效應………………………………………………..77 圖5.18 (a)氧化鋁閘極氧化層奈米晶記憶體對不同量測頻率的響應(b)氧化鋯閘極氧化層奈米晶記憶體對不同量測頻率的響應………………………………………………………………78 圖5.19 (a)氧化鋁閘極氧化層奈米晶記憶體的持久性量測(b)氧化鋯閘極氧化層奈米晶記憶體的持久性量測………………………79 圖5.20 24nmSiO2閘極氧化層的retention能力……………………80

    REFERENCE
    1.電子與材料雜誌 第24期 奈米電子元件;張鼎張,顏碩廷,劉柏村 ; 單電子電晶體;胡淑芬
    2. 1. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, and K. Chan, “A silicon nanocrystals based memory”, Appl. Phys. Lett. 68, 1377(1996).
    3. Y. Shi, K. Saito, H. Ishikuro, and T. Hiramoto, “Effects of traps on charge storage characteristics in metal-oxide-semiconductor memory structures based on silicon nanocrystals”, J. Appl. Phys. 84, 2358(1998).
    4. L. Guo, E. Leobandung, and S. Y. Chou, “A silicon single-electron transistor memory operating at room temperature”, Science 275, 649(1997).
    5. I. Kim, S. Han, K. Han, J. Lee, and H. Shin, “Room temperature single electron effects in a Si nanocrystal memory”, IEEE Electron Device Letters 20(12), 630(1999).
    6. M. Saitoh, E. Nagata, and T. Hiramoto, “Large memory window and long charge-retention time in ultranarrow channel silicon floating-dot memory”, Appl.
    Phys. Lett. 82, 1787(2003).
    7. Y.-C. King, T.-J. King, and C. Hu, “Charge-trap memory device fabricated by oxidation of Si1-xGex”, IEEE Trans. Electron Devices 48, 696(2001).
    8.Y.-C. King, T.-J. King, and C. Hu, “MOS memory using germanium nanocrystals formed by thermal oxidation of Si1-xGex”, IEDM Tech. Dig., 98(1998).
    9.Z. Liu, C Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal nanocrystal memories—part Ⅰ: device design and fabrication”, IEEE Trans. Electron Devices 49, 1606(2002).
    10.Z. Liu, C Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal nanocrystal memories—part Ⅱ: electrical and characteristics”, IEEE Trans. Electron Devices 49, 1614(2002).
    11.D. Halley, G. Norga, A. Guiller, J. Fompeyrine, J. P. Locquet, U. Drechsler, H. Siegwart, and C. Rossel, “Charging effects on the carrier mobility in silicon-on-insulator wafers covered with high-k layer” J. Appl. Phys. 94, 6607(2003).
    12.H. I. Hanafi, S. Tiwari, and I. Khan, “Fast and long retention-time nano-crystal memory”, IEEE Trans. Electron Devices 43, 1553(1996).
    13.S. Tiwari, F. Rana, K. Chan, L. Shi, and H. Hanafi, “Single charge and confinement effects in nano-crystal memories”, Appl. Phys. Lett. 69, 1232(1996).
    14.N. Takahashi, H. Ishikuro, and T. Hiramoto, “Control of Coulomb blockade oscillations in silicon single electron transistors using silicon nanocrystal floating gates”, Appl. Phys. Lett. 76, 209(2000).
    15.E. Kapetanakis, P. Normand, and D. Tsoukalas, “Room temperature single-electron charging phenomena in large-area nanocrystal memory obtained by low-energy ion beam synthesis”, Appl. Phys. Lett. 80, 2794(2002).
    16.T. Ohzone, T. Matsuda, and T. Hori, “Erase/write cycle test of n-MOSFET’s with Si-implanted gate-SiO2”, IEEE Trans. Electron Devices 43, 1374(1996).
    17.C. Lee, Z. Liu and E. C. Kan, “Investigation on process dependence of self-assembled metal nanocrystals”, Mater. Res. Soc. Symp. Proc. 737, F8.18.1(2003).
    18.C. Lee, A. Gorur-Seetharam and E. C. Kan, “Operational and reliability comparison of discrete-storage nonvolatile memories: advantages of single-and double-layer metal nanocrystals”, IEDM Tech. Dig., 557(2003).
    19.L. W. Teo, W. K. Choi, W. K. Chim, V. Ho, C. M. Moey, M. S. Tay, C. L. Heng, Y. Lei, D. A. Antoniadis, and E. A. Fitzgerald, “Size control and charge storage mechanism of germanium nanocrystals in a metal-insulator-semiconductor structure”, Appl. Phys. Lett. 81, 3639(2002).
    20.V. Ho, L. W. Teo, W. K. Choi, W. K. Chim, and M. S. Tay, “Effect of germanium concentration and tunnel oxide thickness on nanocrystal formation and charge storage/retention characteristics of a trilayer memory structure”, Appl. Phys. Lett. 83, 3558(2003).
    21.W. K. Choi and W. K. Chim, “Observation of memory effect in germanium nanocrystals embedded in an amorphous silicon oxide matrix of a metal-insulator-semiconductor structure”, Appl. Phys. Lett. 80, 2014(2002).
    22.V. Ho, M. S. Tay, C. H. Moey, L. W. Teo, W. K. Choi, W. K. Chim, C. L. Heng, and Y. Lei, “Electrical characterization of a trilayer germanium nanocrystal memory device”, Microelectronic Engineering 66, 33(2003).
    23.T. Hiramoto, “To fill the gap between Si-ULSI and nanodevices”, International Journal of High Speed Electronics and Systems 10 (1), 197(2000).
    24.H. Ishikuro and T. Hiramoto, “Influence of quantum confinement effects on single electron and single hole transistors”, IEDM Tech. Dig., 119(1998).
    25.S. Huang, S. Banerjee, R. T. Tung, and S. Oda, “Quantum confinement energy in nanocrystalline silicon dots from high-frequency conductance measurement”, J. Appl. Phys. 94, 7261(2003).
    26. 半導體元件.(solid state electronic devices),Ben G. Streetman.Sanjay Banerjee
    吳孟奇,洪勝富,連振炘,龔正 譯
    27.P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells-an overview”, in proceedings of the IEEE, number 8, p. 1248(1997).
    28.A. K. Sharma, “Semiconductor memories”, IEEE press, New Jersey, 1997.
    29.S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, and K. Chan, “A silicon nanocrystals based memory”, Appl. Phys. Lett. 68, 1377(1996).
    30.B. Prince, “Emerging Memories – Technologies and Trends” by Kluwer Academic Publishers, p. 133(2002).
    31.S. J. Baik, S. Choi, U-In Chung, and J. T. Moon, “High speed and nonvolatile Si nanocrystal memory for scaled flash technology using highly field-sensitive tunnel barrier”, IEDM Tech. Dig., 545(2003).
    32.K. W. Guarini, C. T. Black, Y. Zhang, I. V. Babich, E. M. Sikorski, and L. M. Gignac, “Low voltage, scalable nanocrystal flash memory fabricated by templated self assembly”, IEDM Tech. Dig., 541(2003).
    33.R. Muralidhar, R. F. Steimle, M. Sadd, R. Rao, C. T. Swift, E. J. Prinz, J. Yater, L. Grieve, K. Harber, and B. Hradsky, “A 6 V embedded 90 nm silicon nanocrystal nonvolatile memory”, IEDM Tech. Dig., 601(2003).
    34.T. Ohzone, T. Matsuda, and T. Hori, “Erase/write cycle test of n-MOSFET’s with Si-implanted gate-SiO2”, IEEE Trans. Electron Devices 43, 1374(1996).
    35.G. Puzzilli, D. Caputo, and F. Irrera, “Fast and reliable tunnel programming of nanocrystal nonvolatile memories”, IEEE Trans. Electron Devices 51, 1205(2004).
    36.J. K. Kim. H. J. Cheong, Y. Kim, J. Y. Yi, H. J. Bark, S. H. Bang, and J. H. Cho, “Rapid-thermal-annealing effect on lateral charge loss in metal-oxide-semiconductor capacitors with Ge nanocrystals”, Appl. Phys. Lett. 82, 2527(2003).
    37.T. Hiramoto, “To fill the gap between Si-ULSI and nanodevices”, International Journal of High Speed Electronics and Systems 10 (1), 197(2000).
    38.Y. Shi, K. Saito, H. Ishikuro, and T. Hiramoto, “Effects of traps on charge storage characteristics in metal-oxide-semiconductor memory structures based on silicon nanocrystals”, J. Appl. Phys. 84, 2358(1998).
    39.H. I. Hanafi, S. Tiwari, and I. Khan, “Fast and long retention-time nano-crystal memory”, IEEE Trans. Electron Devices 43, 1553(1996).
    40.S. Tiwari, F. Rana, K. Chan, L. Shi, and H. Hanafi, “Single charge and confinement effects in nano-crystal memories”, Appl. Phys. Lett. 69, 1232(1996).
    41.M. Saitoh, E. Nagata, and T. Hiramoto, “Large memory window and long charge-retention time in ultranarrow channel silicon floating-dot memory”, Appl. Phys. Lett. 82, 1787(2003).
    42.N. Takahashi, H. Ishikuro, and T. Hiramoto, “Control of Coulomb blockade oscillations in silicon single electron transistors using silicon nanocrystal floating gates”, Appl. Phys. Lett. 76, 209(2000).
    43.E. Kapetanakis, P. Normand, and D. Tsoukalas, “Room temperature single-electron charging phenomena in large-area nanocrystal memory obtained by low-energy ion beam synthesis”, Appl. Phys. Lett. 80, 2794(2002).
    44.C. Lee, Z. Liu and E. C. Kan, “Investigation on process dependence of self-assembled metal nanocrystals”, Mater. Res. Soc. Symp. Proc. 737, F8.18.1(2003).
    45.C. Lee, A. Gorur-Seetharam and E. C. Kan, “Operational and reliability comparison of discrete-storage nonvolatile memories: advantages of single-and double-layer metal nanocrystals”, IEDM Tech. Dig., 557(2003).
    46.Z. Liu, C Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal nanocrystal memories—part Ⅰ: device design and fabrication”, IEEE Trans. Electron Devices 49, 1606(2002).
    47.Z. Liu, C Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal nanocrystal memories—part Ⅱ: electrical and characteristics”, IEEE Trans. Electron Devices 49, 1614(2002).
    48.L. W. Teo, W. K. Choi, W. K. Chim, V. Ho, C. M. Moey, M. S. Tay, C. L. Heng, Y. Lei, D. A. Antoniadis, and E. A. Fitzgerald, “Size control and charge storage mechanism of germanium nanocrystals in a metal-insulator-semiconductor structure”, Appl. Phys. Lett. 81, 3639(2002).
    49.V. Ho, L. W. Teo, W. K. Choi, W. K. Chim, and M. S. Tay, “Effect of germanium concentration and tunnel oxide thickness on nanocrystal formation and charge storage/retention characteristics of a trilayer memory structure”, Appl. Phys. Lett. 83, 3558(2003).
    50.W. K. Choi and W. K. Chim, “Observation of memory effect in germanium nanocrystals embedded in an amorphous silicon oxide matrix of a metal-insulator-semiconductor structure”, Appl. Phys. Lett. 80, 2014(2002).
    51.V. Ho, M. S. Tay, C. H. Moey, L. W. Teo, W. K. Choi, W. K. Chim, C. L. Heng, and Y. Lei, “Electrical characterization of a trilayer germanium nanocrystal memory device”, Microelectronic Engineering 66, 33(2003).
    52.H. Ishikuro and T. Hiramoto, “Influence of quantum confinement effects on single electron and single hole transistors”, IEDM Tech. Dig., 119(1998).
    53.P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells-an overview”, in proceedings of the IEEE, number 8, p. 1248(1997).
    54.R. Ohba, “Nonvolatile Si quantum memory with self-aligned doubly-stacked dots”, IEDM Tech. Dig., 313(2000).
    55.I. Kim, “Room temperature single electron effects in Si quantum dot memory with oxide-nitride tunneling dielectrics”, IEDM Tech. Dig., 111(1998).
    56. 半導體元件.(solid state electronic devices),Ben G. Streetman.Sanjay Banerjee
    吳孟奇,洪勝富,連振炘,龔正 譯
    57.白金奈米晶粒於金屬-氧化物-半導體結構中對非揮發性懸浮閘極記憶體應用之研究,清華大學博士論文,曾駿逸博士
    58.C.Lee,A.Gorur-seetharam and E.C.Kan,Tech.Dig.-Int.Electron Devices Meet,557(2003)
    59.Y.Shi,K.Saito,H.Ishikuro,and T. Hiramoto,J. APPl.Phys.84,2358(1998)
    60.T.Futatsugi et al,Fujitsu,1998
    61. J. B. Kim, D. R. Kwon, K. Chakrabarti, and Chongmu Leea), K. Y. Oh, J. H. Lee
    “Improvement in Al2O3 dielectric behavior by using ozone as an oxidant for the atomic layer deposition technique”, JOURNAL OF APPLIED PHYSICS VOLUME 92, NUMBER 11 1 DECEMBER 2002
    62.化學氣相沉積二氧化鋯閘極介電薄膜的結構與電性之研究, 清華大學博士論文,黃世賢博士
    63.奈米極金粒子型單電子電晶體研發現況,胡淑芬,吳永俊.黃調元,劉如熹,葉儒林
    64.M. Dai, K. Chen, X. Huang, L. Wu ,L. Zhang ,F. Qiao, W. Li, and K. Chen,”Formation and charfing effect of Si nanocrystals in a-SiNz/a-Si/a-SiNx structures”,J.Appl.Phys,95,640(2004)
    65.S.Huang ,S. Banerjee ,R.T. Tung ,and S. Oda,” electron trapping ,storing ,and emission in nanocrystalline Si dots by capacitance-voltage and conductance-voltage measurement” ,J .Appl.Phys.93,576 (2003)
    66.E.H.Nicollian and A. Goetzberger, Bell Syst.Tech.J.46,1005(1967)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE