研究生: |
沈育任 Shen, Yu-Ren |
---|---|
論文名稱: |
結合相場及水平集方程應用於多圖形顯示卡叢集之兩相流演算法 A phase-field coupled with level set method based on GPE solver for two-phase flow on GPU cluster |
指導教授: |
林昭安
Lin, Chao-An |
口試委員: |
牛仰堯
NIU, YANG-YAO 陳慶耀 Chen, Ching-Yao |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 52 |
中文關鍵詞: | 兩相流 、相場方程 、水平集方程 、弱可壓縮流 、多圖形顯示卡叢集 |
外文關鍵詞: | Two-phase flow, Phase-filed, Level-set, Weakly compressible flow, GPU-cluster |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在兩相流領域,介面捕捉及質量守恆一直都是重要的議題,為了解決此類問題有許多方法被提出。在本篇研究,筆者結合相場和水平集方程以兼顧上述數值要求。保守形式的相場方程擁有質量守恆的特性而水平集方程則是在計算介面的法向量及曲率上有較高準確度,因此結合這兩者優點可以達成一個更準確的兩相流演算法。
除此之外,為了加快圖形顯示卡(graphics processing unit)運算效率,本演算法採用顯式弱可壓縮流方程求解流場。
In two-phase flow problems, interface capturing and mass conservation are always essential issues. A lot of methods were proposed to solve them. In this study, we present a phase-field method coupled with the level set method. The conservative phase-field method describing the interface with diffuse interface provides lots of desirable properties, while the level set method is good at estimating curvature and normal vector suitable for calculation of surface tension force. Combining the two methods can provide a more accurate two-phase flow solver. Besides, for accelerating the efficiency of the simulation, a weakly compressible solver which is explicit and suitable for GPU is adopted.
[1] Shahab Mirjalili, Suhas S Jain, and Micheal Dodd. Interface-capturing methods for twophase flows: An overview and recent developments. Center for Turbulence Research Annual
Research Briefs, 2017:117–135, 2017.
[2] James Glimm, John W. Grove, Xiao Lin Li, Keh-Ming Shyue, Yanni Zeng, and Qiang
Zhang. Three-dimensional front tracking. SIAM Journal on Scientific Computing,
19(3):703–727, 1998.
[3] Sean McKee, Murilo F Tom´e, Valdemir G Ferreira, Jos´e A Cuminato, Antonio Castelo,
FS Sousa, and Norberto Mangiavacchi. The mac method. Computers & Fluids, 37(8):907–
930, 2008.
[4] Mark Sussman, Peter Smereka, Stanley Osher, et al. A level set approach for computing
solutions to incompressible two-phase flow. Journal of Computational Physics, 114(1):146–
159, June 1994.
[5] Denis Gueyffier, Jie Li, Ali Nadim, Ruben Scardovelli, and St´ephane Zaleski. Volume-offluid interface tracking with smoothed surface stress methods for three-dimensional flows.
Journal of Computational Physics, 152(2):423–456, jul 1999.
[6] David Jacqmin. Calculation of two-phase navier–stokes flows using phase-field modeling.
Journal of Computational Physics, 155(1):96–127, 1999.
[7] Gr´etar Tryggvason, Ruben Scardovelli, and St´ephane Zaleski. Direct numerical simulations
of gas–liquid multiphase flows. Fluid Dynamics Research, 15(9):2–13, September 2011.
[8] Alexandre Joel Chorin. A numerical method for solving incompressible viscous flow
problems. Journal of computational physics, 135(2):118–125, 1997.
48
[9] Shiyi Chen and Gary D Doolen. Lattice boltzmann method for fluid flows. Annual review
of fluid mechanics, 30(1):329–364, 1998.
[10] Jonathan R Clausen. Entropically damped form of artificial compressibility for explicit
simulation of incompressible flow. Physical Review E, 87(1):013309, 2013.
[11] Adrien Toutant. General and exact pressure evolution equation. Physics Letters A,
381(44):3739–3742, 2017.
[12] Adrien Toutant. Numerical simulations of unsteady viscous incompressible flows using
general pressure equation. Journal of Computational Physics, 374:822–842, 2018.
[13] Marianne M Francois, Sharen J Cummins, Edward D Dendy, Douglas B Kothe, James M
Sicilian, and Matthew W Williams. A balanced-force algorithm for continuous and
sharp interfacial surface tension models within a volume tracking framework. Journal
of Computational Physics, 213(1):141–173, 2006.
[14] St´ephane Popinet. Numerical models of surface tension. Annual Review of Fluid
Mechanics, 50:49–75, 2018.
[15] James A Sethian and Peter Smereka. Level set methods for fluid interfaces. Annual review
of fluid mechanics, 35(1):341–372, 2003.
[16] Cyril W Hirt and Billy D Nichols. Volume of fluid (vof) method for the dynamics of free
boundaries. Journal of computational physics, 39(1):201–225, 1981.
[17] Danping Peng, Barry Merriman, Stanley Osher, Hongkai Zhao, and Myungjoo Kang. A
pde-based fast local level set method. Journal of computational physics, 155(2):410–438,
1999.
[18] Giovanni Russo and Peter Smereka. A remark on computing distance functions. Journal
of computational physics, 163(1):51–67, 2000.
[19] John W Cahn and John E Hilliard. Free energy of a nonuniform system. i. interfacial free
energy. The Journal of chemical physics, 28(2):258–267, 1958.
49
[20] Samuel M Allen and John W Cahn. Mechanisms of phase transformations within the
miscibility gap of fe-rich fe-al alloys. Acta Metallurgica, 24(5):425–437, 1976.
[21] Pengtao Yue, Chunfeng Zhou, and James J Feng. Spontaneous shrinkage of drops and
mass conservation in phase-field simulations. Journal of Computational Physics, 223(1):1–
9, 2007.
[22] Dongsun Lee and Junseok Kim. Comparison study of the conservative allen–cahn and the
cahn–hilliard equations. Mathematics and Computers in Simulation, 119:35–56, 2016.
[23] Ying Sun and Christoph Beckermann. Sharp interface tracking using the phase-field
equation. Journal of Computational Physics, 220(2):626–653, 2007.
[24] Pao-Hsiung Chiu and Yan-Ting Lin. A conservative phase field method for solving
incompressible two-phase flows. Journal of Computational Physics, 230(1):185–204, jan
2011.
[25] Elin Olsson and Gunilla Kreiss. A conservative level set method for two phase flow. Journal
of computational physics, 210(1):225–246, 2005.
[26] Shahab Mirjalili and Ali Mani. Consistent, energy-conserving momentum transport for
simulations of two-phase flows using the phase field equations. Journal of Computational
Physics, 426:109918, 2021.
[27] Adam Kajzer and Jacek Pozorski. A weakly compressible, diffuse-interface model for twophase flows. Flow, Turbulence and Combustion, 105:299–333, 2020.
[28] Kai Yang and Takayuki Aoki. Weakly compressible navier-stokes solver based on evolving
pressure projection method for two-phase flow simulations. Journal of Computational
Physics, 431:110113, 2021.
[29] Chi-Wang Shu and Stanley Osher. Efficient implementation of essentially non-oscillatory
shock-capturing schemes. Journal of computational physics, 77(2):439–471, 1988.
[30] Shintaro Matsushita and Takayuki Aoki. A weakly compressible scheme with a diffuseinterface method for low mach number two-phase flows. Journal of Computational Physics,
376:838–862, 2019.
50
[31] Martin Geier, Abbas Fakhari, and Taehun Lee. Conservative phase-field lattice boltzmann
model for interface tracking equation. Physical Review E, 91(6):063309, 2015.
[32] Guang-Shan Jiang and Danping Peng. Weighted eno schemes for hamilton–jacobi
equations. SIAM Journal on Scientific computing, 21(6):2126–2143, 2000.
[33] Stanley Osher and Ronald Fedkiw. Level set methods and dynamic implicit surfaces,
volume 153 of Applied Mathematical Sciences. Springer-Verlag, New York, 2003.
[34] Elisabeth Rouy and Agnes Tourin. A viscosity solutions approach to shape-from-shading.
SIAM Journal on Numerical Analysis, 29(3):867–884, 1992.
[35] Paul Macklin and John Lowengrub. Evolving interfaces via gradients of geometrydependent interior poisson problems: application to tumor growth. Journal of
Computational Physics, 203(1):191–220, 2005.
[36] Thomas Abadie, Joelle Aubin, and Dominique Legendre. On the combined effects of surface
tension force calculation and interface advection on spurious currents within volume of fluid
and level set frameworks. Journal of Computational Physics, 297:611–636, 2015.
[37] Stefan Albensoeder and Hendrik C Kuhlmann. Accurate three-dimensional lid-driven
cavity flow. Journal of Computational Physics, 206(2):536–558, 2005.
[38] Shu-Ren Hysing, Stefan Turek, Dmitri Kuzmin, Nicola Parolini, Erik Burman,
Sashikumaar Ganesan, and Lutz Tobiska. Quantitative benchmark computations of twodimensional bubble dynamics. International Journal for Numerical Methods in Fluids,
60(11):1259–1288, 2009.
[39] S Aland and A Voigt. Benchmark computations of diffuse interface models for twodimensional bubble dynamics. International Journal for Numerical Methods in Fluids,
69(3):747–761, 2012.
[40] Changhong Hu and Makoto Sueyoshi. Numerical simulation and experiment on dam break
problem. Journal of Marine Science and Application, 9(2):109–114, 2010.
51
[41] John Christopher Martin, William James Moyce, JC Martin, WJ Moyce, William George
Penney, AT Price, and CK Thornhill. Part iv. an experimental study of the collapse of
liquid columns on a rigid horizontal plane. Philosophical Transactions of the Royal Society
of London. Series A, Mathematical and Physical Sciences, 244(882):312–324, 1952.
[42] DL Sun and WQ Tao. A coupled volume-of-fluid and level set (voset) method for
computing incompressible two-phase flows. International Journal of Heat and Mass
Transfer, 53(4):645–655, 2010.