簡易檢索 / 詳目顯示

研究生: 陳品融
Chen, Pin-Jung
論文名稱: Ia型超新星對原始黑洞之限制
Constraints on Primordial Black Holes by Type Ia Supernovae
指導教授: 曾柏彥
Tseng, Po-Yen
口試委員: 張敬民
Cheung, Kingman
陳傳仁
Chen, Chuan-Ren
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 89
中文關鍵詞: 原始黑洞Ia型超新星白矮星暗物質一階相變暗域黑洞
外文關鍵詞: Primordial Black Hole, Type Ia Supernova, White Dwarf, Dark Matter, First-Order Phase Transition, Dark Sector, Black Hole
相關次數: 點閱:31下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 通過在暗域模型中的一階相變和Yukawa耦合,可以生成質量為$10^{-14}\,M_\odot - 10^{-11}\,M_\odot$的原始黑洞。當這種質量範圍內的原始黑洞穿過由碳和氧組成的白矮星時,在反應介質中發生的Bondi-Hoyle-Lyttleton吸積會產生衝擊波,從而在單個白矮星核心中引發直接爆震點火,最終導致Ia型超新星的發生。本研究的目的是通過對Ia型超新星發生率的計算和觀測結果,提供對原始黑洞的限制,即暗物質中原始黑洞所占的比例,這些對原始黑洞的限制無法由霍金輻射或重力微透鏡效應獲得。Ia型超新星傾向於由以下質量範圍的原始黑洞產生:在Navarro-Frenk-White暗物質分布下為[$7.59\times10^{-13}\,M_{\odot},6.11\times10^{-12}\,M_{\odot}$],在等溫暗物質分布下為[$7.59\times10^{-13}\,M_{\odot},2.74\times10^{-12}\,M_{\odot}$],在Kra暗物質分布下為[$9.98\times10^{-13}\,M_{\odot},1.99\times10^{-12}\,M_{\odot}$],而在Moore暗物質分布下為[$3.11\times10^{-13}\,M_{\odot},1.51\times10^{-11}\,M_{\odot}$]。此外,重力波功率譜進一步表明,本論文提供之對原始黑洞的限制可以通過2040年代微赫茲重力波探測器$\mu$Ares得到驗證。


    A primordial black hole (PBH) formation mechanism realised by first-order phase transition and Yukawa coupling in a dark sector model can generate PBHs of mass $10^{-14}\,M_\odot - 10^{-11}\,M_\odot$, and when a PBH within this mass range passes through a white dwarf (WD) made up of carbon and oxygen, Bondi-Hoyle-Lyttleton (BHL) accretion in a reactive medium creates a shock wave which brings about direct detonation ignition in the single WD core and then leads to Type Ia supernova (SN Ia). The aim of this study was to provide constraints on PBHs, the fraction of dark matter (DM) constituted by PBHs, which cannot be constrained by either Hawking radiation or microlensing, through SN Ia event rate obtained from calculations and observations. The SN Ia event rate prefers PBH masses in [$7.59\times10^{-13}\,M_{\odot},6.11\times10^{-12}\,M_{\odot}$], [$7.59\times10^{-13}\,M_{\odot},2.74\times10^{-12}\,M_{\odot}$], [$9.98\times10^{-13}\,M_{\odot},1.99\times10^{-12}\,M_{\odot}$], and [$3.11\times10^{-13}\,M_{\odot},1.51\times10^{-11}\,M_{\odot}$] in the Navarro-Frenk-White (NFW), isothermal, Kra, and Moore profiles, respectively, and the gravitational wave (GW) power spectra further suggest that the constraints provided in this thesis can be probed by $\mu$-Hz GW detector $\mu$Ares by the 2040s'.

    Abstract (Mandarin) II Abstract III Acknowledgements IV Contents VI List of Figures X List of Tables XII List of Algorithms XIII 1 Introduction 1 1.1 Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 BHs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4.1 Einstein field equations . . . . . . . . . . . . . . . . . . . . 3 1.4.2 Friedmann equations . . . . . . . . . . . . . . . . . . . . . . 6 1.4.3 Classification of BHs . . . . . . . . . . . . . . . . . . . . . . 7 1.5 Relic abundance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.6 Hypothetical evolution of the early Universe . . . . . . . . . . . . . 9 VI 1.7 PBHs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.8 DM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.8.1 DM Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.8.2 DM density profiles. . . . . . . . . . . . . . . . . . . . . . . 14 1.8.3 Facts about DM . . . . . . . . . . . . . . . . . . . . . . . . 14 1.8.4 DM candidates . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.9 Phase transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.9.1 Spontaneous symmetry breaking . . . . . . . . . . . . . . . 16 1.9.2 Phase transitions in the early Universe . . . . . . . . . . . . 17 1.10 A first-order phase transition in a dark sector model . . . . . . . . 19 1.10.1 Tunneling probability at zero and nonzero finite temperatures 20 1.10.2 True vacuum bubble formation at zero temperature due to quantum fluctuations. . . . . . . . . . . . . . . . . . . . . . 23 1.10.3 True vacuum bubble formation at nonzero finite temperature due to thermodynamic fluctuations . . . . . . . . . . . 25 1.10.4 Tunneling probability . . . . . . . . . . . . . . . . . . . . . 26 1.11 GWs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.11.1 Prediction of the existence of GWs from the Einstein field equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.11.2 Characterisation of GWs . . . . . . . . . . . . . . . . . . . . 27 1.12 Prediction of stochastic GW power spectra from a first-order phase transition in a dark sector model: thermodynamic parameters . . . 28 1.12.1 Nucleation temperature $T^{\rm dark}_n$ n . . . . . . . . . . . . . . . . . 29 1.12.2 Strength $\alpha_n$ of a first-order phase transition in a dark sector model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.12.3 Fraction $\frac{\beta}{H(T^{\rm dark}_p)}$ . . . . . . . . . . . . . . . . . . . . . . . . 31 1.12.4 Bubble wall velocity $v_w$ . . . . . . . . . . . . . . . . . . . . 31 VII 1.13 Prediction of stochastic GW power spectra from a first-order phase transition in a dark sector model: contributions . . . . . . . . . . . 32 1.13.1 Bubble wall collisions . . . . . . . . . . . . . . . . . . . . . 32 1.13.2 Sound waves . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.13.3 MHL turbulence in the plasma . . . . . . . . . . . . . . . . 35 1.14 Combustion: detonation and deflagration. . . . . . . . . . . . . . . 36 1.15 Type Ia supernovae . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 1.16 Quadrature or numerical integration . . . . . . . . . . . . . . . . . 37 1.16.1 The Trapezoidal Rule for periodic functions . . . . . . . . . 39 1.16.2 Simpson’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . 40 1.16.3 Gaussian quadrature: Gauss-Legendre quadrature . . . . . . 41 1.16.4 Monte Carlo methods for multi-dimensional integrals . . . . 42 2 Methodology 44 2.1 Galactic SN Ia event rate . . . . . . . . . . . . . . . . . . . . . . . 45 2.1.1 WD number density distribution near 100\,pc of the solar system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.1.2 The SN Ia event rate near 100\,pc of the solar system for WDs within a certain mass range . . . . . . . . . . . . . . . 46 2.1.3 Galactic SN Ia event rate . . . . . . . . . . . . . . . . . . . 50 2.2 Constraints on PBHs . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.3 PBH formation mechanism. . . . . . . . . . . . . . . . . . . . . . . 51 2.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.3.2 Simplest realisation. . . . . . . . . . . . . . . . . . . . . . . 52 2.3.3 Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.3.4 Thermal history . . . . . . . . . . . . . . . . . . . . . . . . 57 2.4 A mechanism for Type Ia supernovae triggered by PBHs . . . . . . 61 VIII 2.5 Bounds: The change of effective number of neutrinos, Neff . . . . 64 2.6 Bounds: Stochastic GW power spectra . . . . . . . . . . . . . . . . 64 3 Results and Discussion 65 3.1 Galactic SN Ia event rate . . . . . . . . . . . . . . . . . . . . . . . 65 3.2 Constraints on PBHs . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3 Stochastic GW power spectra . . . . . . . . . . . . . . . . . . . . . 67 4 Summary 69 A The fourth-order Runge-Kutta method for solving coupled differential equations 70 B Monte Carlo methods for multi-dimensional integrals 74 Bibliography 81

    [1] Pin-Jung Chen and Po-Yan Tseng. Type Ia supernovae induced by primordial black holes from dark first-order phase transition. JHEAp, 39:106–113, 2023, arXiv:2305.14399 [astro-ph.HE].
    [2] B. P. Abbott et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett., 116(6):061102, 2016, arXiv:1602.03837 [gr-qc].
    [3] Gianfranco Bertone, Dan Hooper, and Joseph Silk. Particle dark matter: Evidence, candidates and constraints. Phys. Rept., 405:279–390, 2005, hep-ph/0404175.
    [4] Misao Sasaki, Teruaki Suyama, Takahiro Tanaka, and Shuichiro Yokoyama. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett., 117(6):061101, 2016, arXiv:1603.08338 [astro-ph.CO]. [Erratum: Phys.Rev.Lett. 121, 059901 (2018)].
    [5] Simeon Bird, Ilias Cholis, Julian B. Muñoz, Yacine Ali-Haïmoud, Marc Kamionkowski, Ely D. Kovetz, Alvise Raccanelli, and Adam G. Riess. Did LIGO detect dark matter? Phys. Rev. Lett., 116(20):201301, 2016, arXiv:1603.00464 [astro-ph.CO].
    [6] Sebastien Clesse and Juan García-Bellido. The clustering of massive Primordial Black Holes as Dark Matter: measuring their mass distribution with Advanced LIGO. Phys. Dark Univ., 15:142–147, 2017, arXiv:1603.05234 [astro-ph.CO].
    [7] Ivo Labbe et al. A population of red candidate massive galaxies ~600 Myr after the Big Bang. Nature, 616(7956):266–269, 2023, arXiv:2207.12446 [astro-ph.GA].
    [8] Ivan Melo. Higgs potential and fundamental physics. Eur. J. Phys.,
    38(6):065404, 2017, arXiv:1911.08893 [physics.gen-ph].
    [9] Sean M Carroll. Spacetime and geometry. Cambridge University Press, 2019.
    [10] R. L. Workman et al. Review of Particle Physics. PTEP, 2022:083C01, 2022.
    [11] Sean M. Carroll. Lecture notes on general relativity. 12 1997, gr-qc/9712019.
    [12] Mike Guidry. Modern general relativity: black holes, gravitational waves, and cosmology. Cambridge University Press, 2019.
    [13] Daniel Baumann. Cosmology. Cambridge University Press, 2022.
    [14] Bernard Schutz. A first course in general relativity. Cambridge university press, 2022.
    [15] Mariano Quiros. Finite temperature field theory and phase transitions. In ICTP Summer School in High-Energy Physics and Cosmology, pages 187–259, 1 1999, hep-ph/9901312.
    [16] R. Abbott et al. GW190521: A Binary Black Hole Merger with a Total Mass of 150M . Phys. Rev. Lett., 125(10):101102, 2020, arXiv:2009.01075 [gr-qc].
    [17] Bernard Carr, Kazunori Kohri, Yuuiti Sendouda, and Jun’ichi Yokoyama. Constraints on primordial black holes. Rept. Prog. Phys., 84(11):116902, 2021, arXiv:2002.12778 [astro-ph.CO].
    [18] Anne M. Green and Bradley J. Kavanagh. Primordial Black Holes as a dark matter candidate. J. Phys. G, 48(4):043001, 2021, arXiv:2007.10722 [astro-ph.CO].
    [19] Scott Dodelson and Fabian Schmidt. Modern cosmology. Academic press, 2020.
    [20] Barbara Ryden. Introduction to cosmology. Cambridge University Press, 2017.
    [21] David Griffiths. Introduction to elementary particles. John Wiley & Sons, 2020.
    [22] Philip Lu, Kiyoharu Kawana, and Alexander Kusenko. Late-forming primordial black holes: Beyond the CMB era. Phys. Rev. D, 107(10):103037, 2023, arXiv:2210.16462 [astro-ph.CO].
    [23] Kiyoharu Kawana and Ke-Pan Xie. Primordial black holes from a cosmic phase transition: The collapse of Fermi-balls. Phys. Lett. B, 824:136791, 2022, arXiv:2106.00111 [astro-ph.CO].
    [24] Z. Merali. Astrophysics: Fire in the hole! Nature, 496:20–23, 2013.
    [25] S. W. Hawking. Black hole explosions. Nature, 248:30–31, 1974.
    [26] S. W. Hawking. Particle Creation by Black Holes. Commun. Math. Phys., 43:199–220, 1975. [Erratum: Commun.Math.Phys. 46, 206 (1976)].
    [27] Michael F. Wondrak, Walter D. van Suijlekom, and Heino Falcke. Gravitational Pair Production and Black Hole Evaporation. Phys. Rev. Lett., 130(22):221502, 2023, arXiv:2305.18521 [gr-qc].
    [28] George F Chapline. Cosmological effects of primordial black holes. Nature, 253(5489):251–252, 1975.
    [29] David G. Cerdeño. Dark matter 101 dark matter 101 from production to detection. 2016.
    [30] Lucien Heurtier and Hervé Partouche. Spontaneous Freeze Out of Dark Matter From an Early Thermal Phase Transition. Phys. Rev. D, 101(4):043527, 2020, arXiv:1912.02828 [hep-ph].
    [31] Gianfranco Bertone and Dan Hooper. History of dark matter. Rev. Mod. Phys., 90(4):045002, 2018, arXiv:1605.04909 [astro-ph.CO].
    [32] Tongyan Lin. Dark matter models and direct detection. PoS, 333:009, 2019, arXiv:1904.07915 [hep-ph].
    [33] Mark B. Hindmarsh, Marvin Lüben, Johannes Lumma, and Martin Pauly. Phase transitions in the early universe. SciPost Phys. Lect. Notes, 24:1, 2021, arXiv:2008.09136 [astro-ph.CO].
    [34] Nigel Goldenfeld. Lectures on phase transitions and the renormalization group. CRC Press, 2018.
    [35] Andrei Linde. Particle physics and inflationary cosmology. arXiv preprint hep-th/0503203, 2005.
    [36] Sidney R. Coleman. The Fate of the False Vacuum. 1. Semiclassical Theory. Phys. Rev. D, 15:2929–2936, 1977. [Erratum: Phys.Rev.D 16, 1248 (1977)].
    [37] Pasquale Di Bari, Danny Marfatia, and Ye-Ling Zhou. Gravitational waves from first-order phase transitions in Majoron models of neutrino mass. JHEP, 10:193, 2021, arXiv:2106.00025 [hep-ph].
    [38] Curtis G. Callan, Jr. and Sidney R. Coleman. The Fate of the False Vacuum. 2. First Quantum Corrections. Phys. Rev. D, 16:1762–1768, 1977.
    [39] Danny Marfatia and Po-Yan Tseng. Correlated gravitational wave and microlensing signals of macroscopic dark matter. JHEP, 11:068, 2021, arXiv:2107.00859 [hep-ph].
    [40] Anupam Mazumdar and Graham White. Review of cosmic phase transi-
    tions: their significance and experimental signatures. Rept. Prog. Phys., 82(7):076901, 2019, arXiv:1811.01948 [hep-ph].
    [41] Andrei D. Linde. Decay of the False Vacuum at Finite Temperature. Nucl. Phys. B, 216:421, 1983. [Erratum: Nucl.Phys.B 223, 544 (1983)].
    [42] Tom Banks, Carl M. Bender, and Tai Tsun Wu. Coupled anharmonic oscillators. 1. Equal mass case. Phys. Rev. D, 8:3346–3378, 1973.
    [43] Marieke Postma. Phase transitions in the early universe. https://www.nikhef.nl/~mpostma/PT.pdf.
    [44] Danny Marfatia and Po-Yan Tseng. Correlated signals of first-order phase transitions and primordial black hole evaporation. JHEP, 08:001, 2022, arXiv:2112.14588 [hep-ph]. [Erratum: JHEP 08, 249 (2022)].
    [45] Jeong-Pyong Hong, Sunghoon Jung, and Ke-Pan Xie. Fermi-ball dark matter from a first-order phase transition. Phys. Rev. D, 102(7):075028, 2020, arXiv:2008.04430 [hep-ph].
    [46] Albert Einstein. Approximative integration of the field equations of gravitation. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 1916(688-696):1, 1916.
    [47] Albert Einstein. Über Gravitationswellen. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ), 1918:154–167, 1918.
    [48] Peter R Saulson. Fundamentals of interferometric gravitational wave detectors. World Scientific, 1994.
    [49] Nelson Christensen. Stochastic Gravitational Wave Backgrounds. Rept. Prog. Phys., 82(1):016903, 2019, arXiv:1811.08797 [gr-qc].
    [50] Kiyoharu Kawana, Philip Lu, and Ke-Pan Xie. First-order phase transition and fate of false vacuum remnants. JCAP, 10:030, 2022, arXiv:2206.09923 [astro-ph.CO].
    [51] Chiara Caprini et al. Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions. JCAP, 04:001, 2016, arXiv:1512.06239 [astro-ph.CO].
    [52] Paul Joseph Steinhardt. Relativistic Detonation Waves and Bubble Growth in False Vacuum Decay. Phys. Rev. D, 25:2074, 1982.
    [53] Jose R. Espinosa, Thomas Konstandin, Jose M. No, and Geraldine Servant. Energy Budget of Cosmological First-order Phase Transitions. JCAP, 06:028, 2010, arXiv:1004.4187 [hep-ph].
    [54] Danny Marfatia and Po-Yan Tseng. Gravitational wave signals of dark matter freeze-out. JHEP, 02:022, 2021, arXiv:2006.07313 [hep-ph].
    [55] Arthur Kosowsky, Michael S. Turner, and Richard Watkins. Gravitational radiation from colliding vacuum bubbles. Phys. Rev. D, 45:4514–4535, 1992.
    [56] Paul Clavin and Geoff Searby. Combustion waves and fronts in flows: flames, shocks, detonations, ablation fronts and explosion of stars. Cambridge University Press, 2016.
    [57] Heinrich Steigerwald and Emilio Tejeda. Bondi-Hoyle-Lyttleton Accretion in a Reactive Medium: Detonation Ignition and a Mechanism for Type Ia Supernovae. Phys. Rev. Lett., 127(1):011101, 2021, arXiv:2104.07066 [astro-ph.HE].
    [58] Kendall Atkinson. An introduction to numerical analysis. John wiley & sons, 1991.
    [59] G. Peter Lepage. A New Algorithm for Adaptive Multidimensional Integration. J. Comput. Phys., 27:192, 1978.
    [60] Jelte T. A. de Jong, Brian Yanny, Hans-Walter Rix, Andrew E. Dolphin, Nicolas F. Martin, and Timothy C. Beers. Mapping the Stellar Structure of the Milky Way Thick Disk and Halo using SEGUE Photometry. Astrophys. J., 714:663–674, 2010, arXiv:0911.3900 [astro-ph.GA].
    [61] Mukremin Kilic, P. Bergeron, Alekzander Kosakowski, Warren R. Brown, Marcel A. Agüeros, and Simon Blouin. The 100 pc white dwarf sample in the sdss footprint. The Astrophysical Journal, 898(1):84, July 2020.
    [62] Ashley Lascelles. A runge-kutta approach to probing the structure of white dwarf stars. 2016.
    [63] Peter L. Biermann and Louis Clavelli. A Supersymmetric model for triggering Supernova Ia in isolated white dwarfs. Phys. Rev. D, 84:023001, 2011, arXiv:1011.1687 [astro-ph.HE].
    [64] Peter W. Graham, Surjeet Rajendran, and Jaime Varela. Dark Matter Triggers of Supernovae. Phys. Rev. D, 92(6):063007, 2015, arXiv:1505.04444 [hep-ph].
    [65] Weidong Li, Ryan Chornock, Jesse Leaman, Alexei V. Filippenko, Dovi Poznanski, Xiaofeng Wang, Mohan Ganeshalingam, and Filippo Mannucci. Nearby Supernova Rates from the Lick Observatory Supernova Search. III. The Rate-Size Relation, and the Rates as a Function of Galaxy Hubble Type and Colour. Mon. Not. Roy. Astron. Soc., 412:1473, 2011, arXiv:1006.4613 [astro-ph.SR].
    [66] Peisi Huang and Ke-Pan Xie. Primordial black holes from an electroweak phase transition. Phys. Rev. D, 105(11):115033, 2022, arXiv:2201.07243 [hep-ph].
    [67] Michael J. Baker, Joachim Kopp, and Andrew J. Long. Filtered Dark Matter at a First Order Phase Transition. Phys. Rev. Lett., 125(15):151102, 2020, arXiv:1912.02830 [hep-ph].
    [68] Michael Dine, Robert G. Leigh, Patrick Y. Huet, Andrei D. Linde, and Dmitri A. Linde. Towards the theory of the electroweak phase transition. Phys. Rev. D, 46:550–571, 1992, hep-ph/9203203.
    [69] Fred C. Adams. General solutions for tunneling of scalar fields with quartic potentials. Phys. Rev. D, 48:2800–2805, 1993, hep-ph/9302321.
    [70] Dongjin Chway, Tae Hyun Jung, and Chang Sub Shin. Dark matter filtering-out effect during a first-order phase transition. Phys. Rev. D, 101(9):095019, 2020, arXiv:1912.04238 [hep-ph].
    [71] T. D. Lee and Y. Pang. Fermion Soliton Stars and Black Holes. Phys. Rev. D, 35:3678, 1987.
    [72] Kenneth Franklin Riley, Michael Paul Hobson, and Stephen John Bence. Mathematical methods for physics and engineering: a comprehensive guide. Cambridge university press, 2006.
    [73] William H Press. Numerical recipes 3rd edition: The art of scientific computing. Cambridge university press, 2007.
    [74] Thomas Hahn. Cuba—a library for multidimensional numerical integration. Computer Physics Communications, 168(2):78–95, 2005.

    QR CODE