簡易檢索 / 詳目顯示

研究生: 劉勇志
Yung-Chih Liu
論文名稱: 3w方法量測熱傳導係數之溫度效應
Temperatue-dependent effect of thermal conductivity measurement by using 3w method
指導教授: 饒達仁
Da-Jeng Yao
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 101
中文關鍵詞: 3w方法熱傳導係數薄膜
外文關鍵詞: 3w method, thermal conductivity, thin film
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當物體的尺度縮小至微奈米等級的時候,一些物理特性會略有改變,本論文探討的熱傳導係數即是其中一例。首先依照3□方法建立一套完整薄膜熱傳導係數量測的設備,主要搭配鎖相放大器、訊號消去盒、電腦監控程式(LabVIEW)、以及週邊的設備。此量測設備可以快速(大約15分鐘)並精準的將薄膜的熱傳導係數求得。利用建立的量測設備,實際對氧化矽(SiO2)以及氮化矽(Si3N4)薄膜進行量測,藉此驗證量測設備的可行性。實驗得到的熱傳導係數值分別為0.83±0.31%(W/m-K)以及0.78±0.94%(W/m-K),結果顯示實驗值與文獻值相去不遠,故證明此量測設備之可靠性。另外本論文討論熱傳導係數的溫度效應,我們利用加熱平板對量測樣本加熱,藉由外加的電源供應器來控制平板表面的溫度,在整個量測過程中,加熱平板的溫度差可以控制在小於1℃的範圍內。我們也實際量測氮化矽(Si3N4)與氧化矽(SiO2)薄膜熱傳導係數與溫度的關係。實驗結果顯示,氮化矽(Si3N4)與氧化矽(SiO2)薄膜的熱傳導係數會因為溫度升高而增加,上升的趨勢與文獻相近。因此,利用自行建立的量測系統可以快速地將薄膜的熱傳導係數求得,搭配加熱設備後可以了解溫度對於熱傳導係數的影響。


    When the specimen dimension shrunk down to micron or nano scale, some material properties change slightly. Thermal conductivity coefficient studied in this thesis is just one instance. In this thesis, first, we build up a thin-film thermal conductivity measurement system by using 3□ method, including lock- in amplifier, cancellation box, monitoring software (LabVIEW) and other peripheral instruments. In the measurement system, we can obtain the thermal conductivity of thin film quickly (less than 15 minutes) and accurately. Reliability of the system, we measure the thermal conductivity of silicon dioxide(SiO2) and silicon nitride(Si3N4) thin films, results show that the thermal conductivities are 0.83±0.31%(W/m-K) and 0.78±0.94%(W/m-K), respectively. They are very close to the literature values. The temperature-dependent of thin film thermal conductivities are also discussed in this thesis. We control the surface temperature of heating plate and external power supply. In the measurement process, the temperature stability of heating plate can be controlled less than 1℃. We also actually measure the temperature-dependent thermal conductivities of silicon dioxide and silicon nitride. Experimental results show that their thermal conductivities increase gradually with temperature rise. The trend of thermal conductivity is the same with literature proposed. Hence, we can get the thermal conductivity of thin film by 3□ measurement system rapidly, and we can know the temperature-dependent thermal conductivity by the measurement system and external heating stage.

    中文摘要……………………………………………………………………. .........i 英文摘要………………………………………………………………………….ii 誌謝……………………………………………………………………................ iii 總目錄…………………………………………………………………………… iv 圖目錄…………………………………………………………………………...vii 表目錄…………………………………………………………………………… xi 第一章 緒論 1.1簡介………………………………………………………………………….. 1 1.2文獻回顧……………………………………………………………………... 3 1.3本文架構……………………………………………………………………. 10 第二章 3□基本理論推導 2.1加熱線(heater)上的溫度變化□Theater………………………………………. 12 2.2待測膜與基板間的溫度變化□Tinterface……………………………………... 16 2.2.1 厚膜與基板間的溫度變化□Tinterface…………………………………. 16 2.2.2 薄膜與基板間的溫度變化□Tinterface…………………………………. 23 2.3二維非等向性模型(2D anisotropic model)……………….……………….. 26 2.3.1 基板厚度為有限時的修正……………………………………………. 26 2.3.2非等向性薄膜與基板的修正………………………………………….. 27 2.4薄膜熱傳導係數的推算…………………………………………………… 30 第三章 3□量測系統建立 3.1消去盒(cancellation box)之建立................................................................... 31 3.2量測系統週邊設備之建立………………………………………………… 36 3.3待測樣本之製作……………………………………………...……………. 38 3.4量測設備精準度之改進....................................... ..........................................47 3.4.1 LabVIEW程式設計.............................................. ..................................48 3.4.2 將消去盒中麵包板以PCB置換................................ ...........................51 3.5實驗量測步驟以及注意事項...................................... ..................................52 3.6導電薄膜量測原理以及注意事項.................................................................53 3.7溫度效應量測設備之建立....................................................... .....................57 3.8電源供應器輸入功率與加熱板表面溫度之推導………….….. ………….59 第四章 量測結果以及數據分析 4.1四點量測法量測加熱線的電阻值以及TCR值.............. ............................62 4.2實驗數據的分析技巧............................................................ ........................69 4.3量測設備之正確性驗證........................................ ........................................73 4.4導電薄膜(VOx )熱傳導係數之量測………………………………………. 76 4.5不同寬度之加熱線對於熱傳導係數之影.................................................... .80 4.6加熱板實驗設備正確性的驗證..................................….......... ....................84 4.7 GeSbTe薄膜熱傳導係數與溫度的關係............. ..........................................86 第五章 結論以及未來展望 5.1結論....................................................................................... .........................91 5.2未來展望........................................................................... .............................93 參考文獻...................................................................................... .........................95 附錄 PCB板layout.............................................................................................98 圖目錄 圖1-1 元件受到熱之後導致無法正常作動之示意圖………………………... 1 圖1-2 擴散法之示意圖………………………………………………………... 3 圖1-3 在入射光頻率□固定的情況下,透過實驗數據的斜率(slope)將熱 擴散常數D求得,進而推得熱傳導係數k………………………….. 5 圖1-4 使用擴散法量測樣本內的溫度分佈…………………………………... 6 圖1-5 熱傳遞法基本概念之示意圖,圖中斜線部分為待測薄膜…………... 7 圖1-6 Jansen 量測薄膜熱傳導係數所使用的結構圖……………………….. 8 圖1-7 3□方法量測熱傳導係數所需要的結構……………………………….. 9 圖2-1 待測樣本的截面圖,其中加熱線的線寬為2b、加熱線的長度 為l、薄膜的厚度為t…………………………………………………. 13 圖2-2 待測樣本的上視圖……………………………………………………. 13 圖2-3 厚膜量測結構之側視圖,樣本的厚度為T、加熱線的線寬 為2b…………………………………………………………………… 17 圖2-4 S.-M. Lee利用3□方法得到薄膜溫度差與頻率無關……………….. 24 圖2-5 利用參考組以及對照組的方式求得待測薄膜熱傳導係數………… 25 圖2-6 (a)基板的厚度為無限大 (b)基板的厚度為有限 (c)三層(three-layers)的模型…………………………………………... 27 圖2-7 量測非等向性熱傳導係數修正之圖示……………………………….. 29 圖2-8 Si/Ge超晶格之水平與垂直方向熱傳導係數……………………….. 29 圖3-1 3□量測系統概略圖,圖中虛線所包含的就是消去盒的電路部分.... 32 圖3-2 消去盒內部之電路圖以及相關連接線……………….……………… 34 圖3-3 實際完成的麵包板,圖中虛線部分即為CB-50介面……………… 36 圖3-4 電腦監控系統(LabVIEW)……………………………………………. 37 圖3-5 使用PECVD在晶圓表面沉積待測薄膜……………………………. 40 圖3-6 設計不同線寬加熱線測試圖案的光罩圖…………………………… 41 圖3-7 光阻塗佈完畢之後的圖……………………………………………… 42 圖3-8 顯影完成之後的圖…………………………………………………… 43 圖3-9 e-gun蒸鍍完畢之後的圖…………………………………………….. 44 圖3-10 掀離完畢之後的圖…………………………………………………… 44 圖3-11 實際做出來的樣本圖案……………………………………………… 45 圖3-12 將製作完成的樣本黏上銦球(Indium shot)的過程………………….. 45 圖3-13 樣本上金屬線受到破壞的情形…………………………………….... 46 圖3-14 完成之後的量測系統實際圖………………………………………… 47 圖3-15 調控輸入比例的示意圖……………………………………………… 48 圖3-16 透過軟體來減少量測時間之LabVIEW程式畫面………………….. 50 圖3-17 使用PCB後實際量測系統圖………………………………………... 51 圖3-18 PCB與麵包板擷取V3□訊號的比較圖,圖中□V3□的值小於 0.03mV ………………………………………………………………. 52 圖3-19□□熱阻概念的示意圖□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□ 54 圖3-20□□導電薄膜完成後的圖示□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□ 55 圖3-21□□量測導電薄膜所使用的參考晶圓之示意圖□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□ 56 圖3-22 TC-08介面之照片,圖中T型電偶極與樣本接觸,將擷取得到 的溫度,透過RS-232介面與電腦連接,達到即時顯示樣本溫度 的功用………………………………………………………………… 58 圖3-23 加熱平板側視圖……………………………………………………… 59 圖4-1 利用四點量測來得知加熱線電阻值………………………………… 63 圖4-2 初始量測加熱線TCR值之示意圖………………………………….. 65 圖4-3 改進之後加熱線TCR值量測之示意圖…………………………….. 66 圖4-4 改進之後TCR量測的實際圖……………………………………….. 66 圖4-5 不同線寬加熱線的電阻-溫度變化圖………………………………... 67 圖4-6 將鎖相放大器擷取的訊號對頻率取自然對數後所作的圖………… 69 圖4-7 使用加熱線的溫度來估算基板的熱傳導係數……………………… 70 圖4-8 在一維模型下,薄膜的溫度差□Tf與頻率無關……………………. 71 圖4-9 透過數據分析所求得的薄膜熱傳導係數…………………………… 72 圖4-10 利用量測設備對氮化矽薄膜進行量測所得之數據………………… 74 圖4-11 利用量測設備對氧化矽薄膜進行量測所得之數據…………………. 74 圖4-12 紅外線微感測器結構之示意圖……………………………………… 76 圖4-13 量測導電薄膜VOx之結構圖………………………………………… 78 圖4-14 量測導電薄膜VOx之數據圖………………………………………… 79 圖4-15 利用10□m線寬加熱線量測氧化矽薄膜之熱傳導係數……………. 81 圖4-16 Borca-Tasciuc分析加熱線線寬與薄膜厚度比例之關係圖…………. 83 圖4-17氧化矽薄膜熱傳導係數隨溫度變化圖,圖中EXP表示實驗量測 所得到的數……………………………………………………………. 84 圖4-18氮化矽薄膜熱傳導係數隨溫度變化圖,圖中EXP表示實驗量測 所得到的數……………………………………………………………. 85 圖4-19 樣本一在室溫下的熱傳導係數值,圖中小方塊所顯示的就是量 測薄膜的相關參數以及量測所得到的平均熱傳導係數……………. 86 圖4-20 樣本二在室溫下的熱傳導係數值,圖中小方塊所顯示的就是量 測薄膜的相關參數以及量測所得到的平均熱傳導係數……………. 87 圖4-21量測GeSbTe薄膜熱傳導係數與溫度的關係圖…………………….. 88 圖4-22 非晶GST薄膜熱傳導係數與溫度之關係圖……………………….. 89 表目錄 表3-1 CB50AD7541與AD7541連接的相對關係…………………………. 35 表3-2 利用PECVD進行Si3N4/SiO2沉積的製程條件……………………… 39 表3-3 外部電源供應器輸入功率與加熱板表面溫度之關係……………….. 61 表4-1 氧化矽(SiO2)薄膜熱傳導係數參考文獻………………………………. 75 表4-2 氮化矽(Si3N4)薄膜熱傳導係數參考文獻……………………………... 76 表4-3不同線寬加熱線量測LPCVD oxide熱傳導係數之數據……………...83

    參考文獻

    [1] Minhang Bao and Weiyuan Wang, “ Future of microelectro- mechanical systems (MEMS),” Sensors and Actuators A, vol. 56, pp. 135-141, 1996.
    [2] S. -M. Lee and David G. Cahill, “Heat transport in thin dielectric films,” Journal of Applied Physics, vol. 81, pp. 2590–2595, 1996.
    [3] Kenneth E. Goodson, and MI Flik, “Solid layer thermal conductivity measurement techniques,” Applied Mechanics Review, vol. 47, pp. 101–112, 1994.
    [4] J. E. Graebner, S. Jin, G. W. Kammlott, B. Bacon, L. Seibles, and W. Banholzer, “Anisotropic thermal conductivity in chemical vapor deposition diamond,” Journal of Applied Physics, vol. 71, pp. 5353–5356, 1992.
    [5] M. Banaszkiewicz, K Seiferlin, T. Spohn, G. Kargl and N. Komle, “A new method for the determination of thermal conductivity and thermal diffusivity from linear heat source measurements,” Review of Scientific Instruments, vol. 68, pp. 4184–4190, 1997.
    [6] Dachen Chu, Maxat Touzelbaev, Kenneth E. Goodson, Sergey Babin, and R. Fabian Pease, “Thermal conductivity measurement of thin-film resist,” Journal of Vacuum Scientific Technology B, vol. 19, pp. 2874-2877, 2001.
    [7] Katsuo Kurabayashi, Mehdi Asheghi, Maxat Touzelbaev and Kenneth E. Goodson, “Measurement of the thermal conductivity anisotropy in polyimide films” Journal of Microelecttromechanical Systems, vol. 8, pp. 180-191, 1999.
    [8] David G. Cahill, “Heat transport in dielectric thin films and at solid-solid interfaces,” Microscale Thermophysical Engineering, vol. 1, pp. 85-109, 1997.
    [9] Takafumi Yao, “Thermal properties of AlAs/GaAs superlattices,” Applied Physical Letters, vol. 51, pp. 1798–1800, 1987.
    [10] G. Chen, C. -L. Tien, X. Wu and J. S. Smith,“Thermal diffusivity measurement of GaAs/AlGaAs thin-film structures ,” ASME Journal of Heat Transfer, vol. 116, pp. 325–331, 1994.
    [11] E. Jansen, E. Obermeier, Thermal Conductivity Measurements on Thin Films Based on Micromechanical Devices, J. Micromech. Microeng. 6, pp.118~121, 1996
    [12] David G. Cahill, “Thermal conductivity measurement from 30 to 750 K: the 3□ method,” Review of Scientific Instruments, vol. 61, pp. 802–808, 1990.

    [13] Norman O. Birge, and Sidney R. Nagel, “Wide-frequency specific heat spectrometer,” Review of Scientific Instruments, vol. 58, pp. 1464–1470, 1987.
    [14] Tsuneyuki Yamane, Naoto Nagai, Shin-ichiro Katayama and Minoru Todoki, “Measurement of thermal conductivity of silicon dioxide thin films using a 3□ method,” Journal of Applied Physics, vol. 91, pp. 9772-9776, 2002.
    [15] H. S. Carslaw and J. C. Jaeger, “Conduction of Heat in Solids,” Oxford University Press, pp. 193, 1959.
    [16] A. Erdelyi, “Tables of Integral Transform,” , vol. 1,McGRAW-Hill, pp. 49, 1987.
    [17] David G. Cahill, M. Katiyar, and J. R. Abelson,“ Thermal conductivity of a-Si:H thin films,” Physical Review B, vol. 50, pp. 6077–6081, 1994.
    [18] A. Jacquot, B. Lenoir, A. Dauscher, M. Stolzer and J. Meusel, “Numerical simulation of the 3□ method for measuring the thermal conductivity, Journal of Applied Physics, vol. 91, pp. 4733-4738, 2002.
    [19] T. Borca-Tasciuc. A. R. Kumar, and G. Chen, “Data reduction in 3□□ method for thin-film thermal conductivity determination,” Review of Scientific Instruments, vol. 72, pp. 2139-2147, 2001.
    [20] Jung Hun Kim, Albert Feldman, and Donald Novotny,“Application of the three omega thermal conductivity measurement method to a film on a substrate of finite thickness,” Journal of Applied Physics, vol. 86, pp. 3959-3963, 1999.
    [21] Theodorian Borca-Tasciuc, Weili Liu, Jianlin Liu, Kang L. Wang
    and Gang Chen, “Anisotropic thermal conductivity of a Si/Ge quantum dot superlattices”, Proc. of the ASME Heat Transfer division, vol. 366-2, pp.381-384, 2000
    [22] http://www.analog.com
    [23] David G. Cahill and R. O. Pohl, “Thermal conductivity of amorphous solids above the plateau,” Physical Review B, vol. 35, pp. 4067–4073, 1987.
    [24] 莊達人, “VLSI製造技術,” pp. 163, 2002
    [25] Marc J. Madou, “Fundamentals of Microfabrication,” CRC Press, 2002.
    [26] Hong Xiao, “Introduction to semiconductor manufacturing technology,” Prentice Hall, 2001.
    [27] Yunus A. Cengel, “Heat transfer : A pratical approach,” McGRAW-Hill, pp. 139, 2003.

    [28] Romaon Pallas-Areny and John G. Webster, “Sensors and signal conditioning,” John Wiley & Sons, pp. 91, 2001.
    [29] Chunbo Zhang and Khalil Najaf, “Fabrication of thick silicon dioxide layers for thermal isolation,” Journal of Micromechanics and Microengineering, vol. 14, pp. 769–774, 2004.
    [30] Michael B. Kleiner, Stefan A. Kuhn and Werner Weber, “Thermal conductivity measurement of thin silicon dioxide films in integrated circuits,” IEEE Transactions on Electron Devices, vol. 43, pp.1602-1609, 1996
    [31] S. Govorkov, W. Ruderman, M. W. Horn, R. B. Goodman and M. Rothschild, “A new method for measuring thermal conductivity of thin films,” Review of Scientific Instruments, vol. 68, pp. 3828-3834, 1997.
    [32] Chen-Chi Yang, “A Study on Thermal Conductivity of Ultra Low Dielectric Constant Materals,” Department of Electronic Engineering, 2002.
    [33] Chuan Hu, Michael Morgen, Paul S. Ho, Anurag Jain, Willian N. Gill, Joel L. Plawaky and Peter C. Wayner, Jr, “Thermal conductivity study of porous low-k dielectric materials,” Applied Physical Letters, vol. 77, pp. 145-147, 2000.
    [34] Martin von Arx, “Process-dependent thin-film thermal conductivities for thermal CMOS MEMS,” Journal of Micro-electromechanical systems, vol. 9, pp. 136-144, 2000.
    [35] Thermophysical Properties of Matter, the TPRC Data Series, Thermal Conductivity of Nonmetallic Solids, Vol. 2, edited by Y. S. Touloukian and C. Y. Ho (IFI/Plenum, New York,1970),p. 662.
    [36] G. Chen, S.Q. Zhou, D.-J Yao, C.J. Kim, X.Y. Zheng, Z.L Liu, and K.L. Wang, “Heat Conduction in Alloy-Based Superlattices” International conference on Thermoelectrics, pp. 202-205, 1998.
    [37] J. L. Tissot, “Advanced IR detector technology development at CEA/LETI”, Infrared Physics & Technology, vol. 43, pp 223-228, 2002
    [38] B. Cole, R. Horning, B. Johnson, K. Nguyen, P. W. Kruse and M. C. Footr, “High Performance Infrared Detector Arrays using Thin Film Microstructures”, Applications of Ferroelectrics, 1994.ISAF '94., Proceedings of the Ninth IEEE International Symposium on, pp 653-656, 1994
    [39] E.-K. Kim, S.-I. Kwun, S.-M. Lee, H. Seo and J.-G. Yoon, “Thermal boundary resistance at Ge2Sb2Te5/ZnS:SiO2 interface ”, Applied Physics Letters, vol. 76, pp 3864-3866, 2000

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE