研究生: |
劉勇志 Yung-Chih Liu |
---|---|
論文名稱: |
3w方法量測熱傳導係數之溫度效應 Temperatue-dependent effect of thermal conductivity measurement by using 3w method |
指導教授: |
饒達仁
Da-Jeng Yao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 101 |
中文關鍵詞: | 3w方法 、熱傳導係數 、薄膜 |
外文關鍵詞: | 3w method, thermal conductivity, thin film |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當物體的尺度縮小至微奈米等級的時候,一些物理特性會略有改變,本論文探討的熱傳導係數即是其中一例。首先依照3□方法建立一套完整薄膜熱傳導係數量測的設備,主要搭配鎖相放大器、訊號消去盒、電腦監控程式(LabVIEW)、以及週邊的設備。此量測設備可以快速(大約15分鐘)並精準的將薄膜的熱傳導係數求得。利用建立的量測設備,實際對氧化矽(SiO2)以及氮化矽(Si3N4)薄膜進行量測,藉此驗證量測設備的可行性。實驗得到的熱傳導係數值分別為0.83±0.31%(W/m-K)以及0.78±0.94%(W/m-K),結果顯示實驗值與文獻值相去不遠,故證明此量測設備之可靠性。另外本論文討論熱傳導係數的溫度效應,我們利用加熱平板對量測樣本加熱,藉由外加的電源供應器來控制平板表面的溫度,在整個量測過程中,加熱平板的溫度差可以控制在小於1℃的範圍內。我們也實際量測氮化矽(Si3N4)與氧化矽(SiO2)薄膜熱傳導係數與溫度的關係。實驗結果顯示,氮化矽(Si3N4)與氧化矽(SiO2)薄膜的熱傳導係數會因為溫度升高而增加,上升的趨勢與文獻相近。因此,利用自行建立的量測系統可以快速地將薄膜的熱傳導係數求得,搭配加熱設備後可以了解溫度對於熱傳導係數的影響。
When the specimen dimension shrunk down to micron or nano scale, some material properties change slightly. Thermal conductivity coefficient studied in this thesis is just one instance. In this thesis, first, we build up a thin-film thermal conductivity measurement system by using 3□ method, including lock- in amplifier, cancellation box, monitoring software (LabVIEW) and other peripheral instruments. In the measurement system, we can obtain the thermal conductivity of thin film quickly (less than 15 minutes) and accurately. Reliability of the system, we measure the thermal conductivity of silicon dioxide(SiO2) and silicon nitride(Si3N4) thin films, results show that the thermal conductivities are 0.83±0.31%(W/m-K) and 0.78±0.94%(W/m-K), respectively. They are very close to the literature values. The temperature-dependent of thin film thermal conductivities are also discussed in this thesis. We control the surface temperature of heating plate and external power supply. In the measurement process, the temperature stability of heating plate can be controlled less than 1℃. We also actually measure the temperature-dependent thermal conductivities of silicon dioxide and silicon nitride. Experimental results show that their thermal conductivities increase gradually with temperature rise. The trend of thermal conductivity is the same with literature proposed. Hence, we can get the thermal conductivity of thin film by 3□ measurement system rapidly, and we can know the temperature-dependent thermal conductivity by the measurement system and external heating stage.
參考文獻
[1] Minhang Bao and Weiyuan Wang, “ Future of microelectro- mechanical systems (MEMS),” Sensors and Actuators A, vol. 56, pp. 135-141, 1996.
[2] S. -M. Lee and David G. Cahill, “Heat transport in thin dielectric films,” Journal of Applied Physics, vol. 81, pp. 2590–2595, 1996.
[3] Kenneth E. Goodson, and MI Flik, “Solid layer thermal conductivity measurement techniques,” Applied Mechanics Review, vol. 47, pp. 101–112, 1994.
[4] J. E. Graebner, S. Jin, G. W. Kammlott, B. Bacon, L. Seibles, and W. Banholzer, “Anisotropic thermal conductivity in chemical vapor deposition diamond,” Journal of Applied Physics, vol. 71, pp. 5353–5356, 1992.
[5] M. Banaszkiewicz, K Seiferlin, T. Spohn, G. Kargl and N. Komle, “A new method for the determination of thermal conductivity and thermal diffusivity from linear heat source measurements,” Review of Scientific Instruments, vol. 68, pp. 4184–4190, 1997.
[6] Dachen Chu, Maxat Touzelbaev, Kenneth E. Goodson, Sergey Babin, and R. Fabian Pease, “Thermal conductivity measurement of thin-film resist,” Journal of Vacuum Scientific Technology B, vol. 19, pp. 2874-2877, 2001.
[7] Katsuo Kurabayashi, Mehdi Asheghi, Maxat Touzelbaev and Kenneth E. Goodson, “Measurement of the thermal conductivity anisotropy in polyimide films” Journal of Microelecttromechanical Systems, vol. 8, pp. 180-191, 1999.
[8] David G. Cahill, “Heat transport in dielectric thin films and at solid-solid interfaces,” Microscale Thermophysical Engineering, vol. 1, pp. 85-109, 1997.
[9] Takafumi Yao, “Thermal properties of AlAs/GaAs superlattices,” Applied Physical Letters, vol. 51, pp. 1798–1800, 1987.
[10] G. Chen, C. -L. Tien, X. Wu and J. S. Smith,“Thermal diffusivity measurement of GaAs/AlGaAs thin-film structures ,” ASME Journal of Heat Transfer, vol. 116, pp. 325–331, 1994.
[11] E. Jansen, E. Obermeier, Thermal Conductivity Measurements on Thin Films Based on Micromechanical Devices, J. Micromech. Microeng. 6, pp.118~121, 1996
[12] David G. Cahill, “Thermal conductivity measurement from 30 to 750 K: the 3□ method,” Review of Scientific Instruments, vol. 61, pp. 802–808, 1990.
[13] Norman O. Birge, and Sidney R. Nagel, “Wide-frequency specific heat spectrometer,” Review of Scientific Instruments, vol. 58, pp. 1464–1470, 1987.
[14] Tsuneyuki Yamane, Naoto Nagai, Shin-ichiro Katayama and Minoru Todoki, “Measurement of thermal conductivity of silicon dioxide thin films using a 3□ method,” Journal of Applied Physics, vol. 91, pp. 9772-9776, 2002.
[15] H. S. Carslaw and J. C. Jaeger, “Conduction of Heat in Solids,” Oxford University Press, pp. 193, 1959.
[16] A. Erdelyi, “Tables of Integral Transform,” , vol. 1,McGRAW-Hill, pp. 49, 1987.
[17] David G. Cahill, M. Katiyar, and J. R. Abelson,“ Thermal conductivity of a-Si:H thin films,” Physical Review B, vol. 50, pp. 6077–6081, 1994.
[18] A. Jacquot, B. Lenoir, A. Dauscher, M. Stolzer and J. Meusel, “Numerical simulation of the 3□ method for measuring the thermal conductivity, Journal of Applied Physics, vol. 91, pp. 4733-4738, 2002.
[19] T. Borca-Tasciuc. A. R. Kumar, and G. Chen, “Data reduction in 3□□ method for thin-film thermal conductivity determination,” Review of Scientific Instruments, vol. 72, pp. 2139-2147, 2001.
[20] Jung Hun Kim, Albert Feldman, and Donald Novotny,“Application of the three omega thermal conductivity measurement method to a film on a substrate of finite thickness,” Journal of Applied Physics, vol. 86, pp. 3959-3963, 1999.
[21] Theodorian Borca-Tasciuc, Weili Liu, Jianlin Liu, Kang L. Wang
and Gang Chen, “Anisotropic thermal conductivity of a Si/Ge quantum dot superlattices”, Proc. of the ASME Heat Transfer division, vol. 366-2, pp.381-384, 2000
[22] http://www.analog.com
[23] David G. Cahill and R. O. Pohl, “Thermal conductivity of amorphous solids above the plateau,” Physical Review B, vol. 35, pp. 4067–4073, 1987.
[24] 莊達人, “VLSI製造技術,” pp. 163, 2002
[25] Marc J. Madou, “Fundamentals of Microfabrication,” CRC Press, 2002.
[26] Hong Xiao, “Introduction to semiconductor manufacturing technology,” Prentice Hall, 2001.
[27] Yunus A. Cengel, “Heat transfer : A pratical approach,” McGRAW-Hill, pp. 139, 2003.
[28] Romaon Pallas-Areny and John G. Webster, “Sensors and signal conditioning,” John Wiley & Sons, pp. 91, 2001.
[29] Chunbo Zhang and Khalil Najaf, “Fabrication of thick silicon dioxide layers for thermal isolation,” Journal of Micromechanics and Microengineering, vol. 14, pp. 769–774, 2004.
[30] Michael B. Kleiner, Stefan A. Kuhn and Werner Weber, “Thermal conductivity measurement of thin silicon dioxide films in integrated circuits,” IEEE Transactions on Electron Devices, vol. 43, pp.1602-1609, 1996
[31] S. Govorkov, W. Ruderman, M. W. Horn, R. B. Goodman and M. Rothschild, “A new method for measuring thermal conductivity of thin films,” Review of Scientific Instruments, vol. 68, pp. 3828-3834, 1997.
[32] Chen-Chi Yang, “A Study on Thermal Conductivity of Ultra Low Dielectric Constant Materals,” Department of Electronic Engineering, 2002.
[33] Chuan Hu, Michael Morgen, Paul S. Ho, Anurag Jain, Willian N. Gill, Joel L. Plawaky and Peter C. Wayner, Jr, “Thermal conductivity study of porous low-k dielectric materials,” Applied Physical Letters, vol. 77, pp. 145-147, 2000.
[34] Martin von Arx, “Process-dependent thin-film thermal conductivities for thermal CMOS MEMS,” Journal of Micro-electromechanical systems, vol. 9, pp. 136-144, 2000.
[35] Thermophysical Properties of Matter, the TPRC Data Series, Thermal Conductivity of Nonmetallic Solids, Vol. 2, edited by Y. S. Touloukian and C. Y. Ho (IFI/Plenum, New York,1970),p. 662.
[36] G. Chen, S.Q. Zhou, D.-J Yao, C.J. Kim, X.Y. Zheng, Z.L Liu, and K.L. Wang, “Heat Conduction in Alloy-Based Superlattices” International conference on Thermoelectrics, pp. 202-205, 1998.
[37] J. L. Tissot, “Advanced IR detector technology development at CEA/LETI”, Infrared Physics & Technology, vol. 43, pp 223-228, 2002
[38] B. Cole, R. Horning, B. Johnson, K. Nguyen, P. W. Kruse and M. C. Footr, “High Performance Infrared Detector Arrays using Thin Film Microstructures”, Applications of Ferroelectrics, 1994.ISAF '94., Proceedings of the Ninth IEEE International Symposium on, pp 653-656, 1994
[39] E.-K. Kim, S.-I. Kwun, S.-M. Lee, H. Seo and J.-G. Yoon, “Thermal boundary resistance at Ge2Sb2Te5/ZnS:SiO2 interface ”, Applied Physics Letters, vol. 76, pp 3864-3866, 2000