研究生: |
陳永霖 Yung-Lin Chen |
---|---|
論文名稱: |
伺服控制之光通訊大型光學開關之設計與製作 Design and Fabrication of Servo-Controlled CMOS-MEMS Micro-Mirrors for Optical Communication |
指導教授: |
盧向成
Professor Shiang-Cheng Lu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2004 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 平行板電容微致動器 、電壓迴授控制 、微機電系統 、大型光學開關 、全光學網路 、互補式金氧半微機電製程 |
外文關鍵詞: | Parallel-plat electrostatic micro-actuator, Voltage feedback control, MEMSL, Large-scale optical switch, All-optical network, CMOS MEMS |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為提升單一光纖的傳輸頻寬,未來將建立以波長分工(Wave-Division Multiplexing,WDM)為基礎的全光學網路,而大型光學開關為其中最重要的元件之一,它的功能在於將一輸入埠(Port)的訊號切換導引至數千個輸出埠中任一個,最新的研究趨勢朝向以微機電(MEMS)技術製作光學鏡面,以鏡面直接反射光的方式作為訊號的導引,並控制角度以切換導引(Switching)至輸出位置,此方式光-光-光(O-O-O)轉換取代傳統光-電-光(O-E-O)的傳輸模式,目標在達到節降低耗能及設備成本。
在此應用中的光學鏡面必須達到三維的大角度轉動,期望減少光在空氣中傳輸的損耗,在本研究計畫選擇以電壓迴授的閉迴路方式,來對大型光學開關中的三維微鏡面做大角度且穩定的轉動控制,除了擴大光訊號引導的角度與位置外,穩定控制的鏡面亦達到較低的光損耗。基於減少佈局面積、操作耗能和製程難易的考量,過去多數的大型光學開關的研究均採取平行板作為致動的方式,並以靜電式開路驅動作為鏡面的驅動,此次的閉迴路除了沿用平行板的驅動方式,並經由電容式感測器作為位置的量測,另外加入了迴授控制能克服制動器在驅動時的非線性以及不穩定性,期望將平行板靜電驅動由三分之一初始間距的不穩定點往後延伸,增加轉動角度,文獻中亦提到以電荷控制的特殊方式來增加轉動角度,但其控制電路必須克服漏電流及電荷注入(Charge injection)以確保長期操作的穩定性,由於外界的擾動或雜訊會引起鏡面的角度變化,而造成光訊號的損耗,故迴授控制亦可用於抑制干擾。
而電壓迴授控制系統的設計構想上,將加入一個線性控制器和一個位置感測器,包含原本的致動器形成閉迴路系統,其中控制器用於延伸致動器的不穩定點,以增強系統穩定的強韌性,位置感測器則是用於控制器之前、致動器之後,將鏡面移動瞬態反應的訊號讀出;而製程方面則採用互補式金氧半微機電(CMOS MEMS)製程已為平台,將電路和結構整合在單一晶片之上,此整合方案除了將電容感測器最常遭遇到的寄生電容效應降至最小外,更期望將來以最低的成本可以大量製造,加速全光學網路的早日誕生。
本論文包含致動器、感測器與伺服控制器的分析與模擬,以及溼蝕刻、乾蝕刻兩步後製程的實驗,和釋放結構後的量測與驗證。
In order to deliver extremely high bandwidth in a single fiber, the vision for future optical communication is to build a WDM-based all-optical network, in which the large-scale optical switches are the most important constituent elements. In essence, a large-scale optical switch can handle network traffic of thousands of input/output ports, allowing any input signal to be routed to the desired output port. Micro-mirrors realized by MEMS technology are intended to replace the conventional optical-electrical-optical conversion by routing light signals using direct reflection. The purpose is to reduce the required power and overall cost.
In order to reduce the transmitting light path and the signal insertion loss in this large-scale optical switching application, the 3D-rotating angle of each micro-mirror has to be increased. In this design, we choose closed-loop control to realize a stable large rotation for the 3D micro-mirrors. Based on issues such as design area, power consumption and ease of fabrication, most research efforts on large-scale optical switches adopt open-loop parallel-plate electrostatic actuation. We expect to use feedback control to extend the travelled range of a parallel-plate actuator beyond one-third of the initial gap. Extended travelled range by charge control has been reported to overcome the pull-in limit. However this method has to use complex circuit to overcome leakage current and charge injection without guaranteed long-term stability. The applied closed-loop control can also perform sensitivity in face of external disturbance reduction.
A linear controller and a position sensor are used in the closed-loop system. The controller is used to stabilize the extended position beyond the pull-in, and a capacitive sensor is used to detect the position. The fabrication of the mirror is based on the CMOS-MEMS process in order to minimize signal attenuation due to the parasitic capacitance.
This theses includes the analysis and simulation of the actuator、the sensor and the servo-controller. The measurements of wet etching and dry etching, posting the CMOS process, verify the released structures.
[1] K. H.-L. Chau, S. R. Lewis, Y. Zhao, R. T. Howe, S. F. Bart, and R. G. Marcheselli, “An integrated force-balanced capacitive accelerometer for low-g applications,” Solid-State Sensors and Actuators, p. 593-596, June 1996.
[2] “IEEE standards for local area networks : carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications”, ANSI/IEEE Std 802.3-1985 , 1985.
[3] De Dobbelaere, P.; Falta, K.; Gloeckner, S.; Patra, S. “Digital MEMS for optical switchinf” IEEE ,Communications Magazine, Vol. 40 , no. 3, p. 88-95, Mar. 2002.
[4] M. Xiaohua, K.Geng-Sheng, “Optical switching technology comparison: optical MEMS vs. other technologies,” IEEE, Communications Magazine, Vol. 41, no. 11, p. S16 - S23, Nov. 2003.
[5] H. Toshiyoshi, H. Fujita, “Electrostatic Micro Torsion Mirrors for an Optical Switch Matrix” J. Microelectromechanical Systems, vol. 5, p. 231–237, Dec. 1996.
[6] T. Zhou, P. Wright, J. Crawford, G. Mckinnon, Y. Zhanf, “MEMS 3D optical mirror/scanner,” MEMS, NANO and Smart Systems, p. 222 – 226, July 2003.
[7] A. P. Neukermans, T. G. Slater, “Micromachined torsional scanner,” U. S. Patent 5 629 790, May 1997.
[8] A. P. Neukermans, T. G. Slater, P. Downing, “Micromachined members coupled for relative rotation by torsional bars,” U. S. Patent 6 044 705, July 1997.
[9] V. A. Aksyuk, D. J. Bishop, ”Self-assembly micro-mechanical device,” U. S. Patent 5 994 159, Nov. 1999.
[10]V. A. Aksyuk, F. Pardo, C. A. Bolle, S. C. Arney, D. J. Bishop, “Lucent Microstar micromirror array technology for large optical cross connects,” Proc. SPIE, vol. 4179, p. 320-324, 2000.
[11]A. Gasparyan, V. A. Aksyuk, P. A. Busch, S. C. Arney, “Mechanical reliability of surface-micromachined self-assembling two axis MEMS tilting mirrors,” Proc. SPIE, vol. 4108, p. 86-90, 2000.
[12]Y. Nemirovsky and O. Bochobza-Degani, “A methodology and model for the pull-in parameters of electrostatic actuators,” J. of Microelectromechanical Systems, vol. 10, no. 4, p. 601-615, 2001.
[13]P. M. Osterberg and S. D. Senturia, “M-TEST: a test chip for MEMS material property measurements using electrostatically actuated test structures,” J. of Microelectromechanical Systems, vol. 6, p. 107-118, June 1997.
[14]K. Sato and M. Shikida, “Electrostatic film actuator with a large vertical displacement,” Micro Electro Mechanical system’92, p. 1-5, Travemunde, Germany, Feb. 1992.
[15]X. T. Wu, R. A. Brown, S. Mathews, and K. R. Farmer, “Extending the travel range of electrostatic micro-mirrors using insulator coated electrodes,” in Proc. IEEE/LEOS int. conf. Opt. MEMS 2000, p. 151-152, Aug. 2000.
[16]C. Cabuz, “Dielectric related effects in micromachined electrostatic actuators,” Conf. on electrical Insulation and Dielectric Phenomena, p. 327-332, Oct. 1999.
[17]R. Jebens, W. Trimmer, and J. Walker, “Microactuators for aligning optical fibers,” Sensors and Actuators A (Physical), vol. 2, p. 65-73, Nov. 1989.
[18]R. Legtenberg, J,Gilbert, S. D. Senturia, and M. Elwenspoek, “Electrostatic curved electrode actuators,” J. of Microelectromechanical Systems, vol. 6, no. 3. p. 257-265, 1997.
[19]E. S. Huang and S. D. Senturia, “Extending the travel range of analog-tuned electrostatic actuators,” J. of Microelectromechanical Systems, vol. 8, no. 4, p. 497-505, Dec. 1999.
[20]D. M. Burns and V. M. Bright, “Nonlinear flexures for stable deflection of an electrostatically actuated micromirror,” Proceedings of SPIE – the International Society for Optical Engineering, vol. 3226, p. 125-136, 1997.
[21]E. K. Chan and R. W. Dutton, “Electrostatic micromechanical actuator with extended rang of travel,” J. of Microelectromechanical Systems, vol. 9, no. 3, p. 321-328, Sept. 2000.
[22]J. I. Seeger and S. B. Crary, “Stabilization of electrostatically actuated mechanical devices,” International Conference on Solid-State Sensors and Actuators (Transducers ‘97), p. 1133-1136, Chicago, IL, USA, June 1997.
[23]L. M. Castaňer, S. D. Senturia, “Speed-energy optimization of electrostatic actuators based on pull-in,” J. of Microelectromechanical systems, vol. 8, no. 3, p. 290-298, Sept. 1999.
[24]R. Nadal-Guardia, R.Aigner, W. Nessler, M. Handtmann and L. M. Castaňer, ”Control positioning of torsional electrostatic actuators by current driving,” The Third International Euroconference on Advanced Semiconductor Devices and Microsystems, p. 91-94, Sinolenice Castle, Slovakia, 2000.
[25]R. Nadal-Guardia, A. Dehé, R. Aigner, and L. M. Castaňer, ”Current drive methods to extend the range of travel of electrostatic microactuators beyond the voltage pull-in point,” J. of Microelectromechanical Systems, vol. 11, no. 3, p. 255-263, Jun. 2002.
[26]R. Nadal-Guardia, A. Dehé, R. Aigner, and L. M. Castaňer, “New current drive method to extend the stable operation range of electrostatic actuators: experimental verification,” in Proc. Int. Conf. on Solid State Sensors and Actuators(Transducers 01), p. 760-763, Munich, Jun. 2001
[27]J. Pons-Nin, A. Rodriguez, and L. M. Castaňer, “Voltage and pull-in time in current drive of electrostatic actuators,” J. of Microelectromechanical Systems, vol. 11, no. 3, p. 196-205, Jun. 2002.
[28]L. M. Castaner,J.Pons-Nin, R. Nadal-Guardia, and A. Rodriguez, “Analysis of tne extended operation range of electrostatic actuators by current pulse drive,” Sensors and Actuators A(Physical), vol.90, p.181-190, May 2001
[29]J. I. Seeger and B. E. Boser, “Dynamics and control of parallel-plate actuators beyond the electrostatic instability,” in Proc. Transducers’99, p. 474-477, Japan, Jun. 1999.
[30]P. B. Chu and K. S. Pister, “Analysis of closed-loop control of parallel-plate electrostatic microgrippers,” in Proc. IEEE int. conf. Robotics and Automation, p. 820-825, San Diego, CA, May 1994.
[31]D. F. Guillou, “Control of MEMS electrostatic parallel-plate actuators,” Ph.D. dissertation, Dept. of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, May 2002.
[32]L. R. Carley, J. A. Bain, G. K. Fedder, D. W. Greve, D. F. Guillou, M. Lu, T. Mukherjee, S. Santhanam, L. Abelmann, and S. Min, “Single-chip computers with microelectromechanical system-based magnetic memory,” Journal of Applied Physics, vol. 87, no. 9, pt. 1-3, p. 6680-6685, 2000.
[33]O. Paul, D. Westberg, G.I. Anderson, H. Baltes, “Sacrificial aluminum etching for CMOS microstructures,” Micro Electro Mechanical Systems, MEMS ’97, proceedings, IEEE, p. 523-528, Jan. 1997.
[34] P. R. Gray and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, Third Edition, John Wiley and Sons, Inc., p. 667-681, 1994.
[35]T. Veijola, H.Kuisma, J. Lahdenperä, and T. Ryhänen, “Equivalent-circuit model of the squeezed gas film in a silicon accelerometer,” Sensors and Actuators A (Physical), vol. 48, p. 239-248, 1995.
[36]L.S. Fan and L. Crawforth, “Spring-softening effect in MEMS microstructures,” 7th Int. Conf. Solid-State Sensors and Actuators, (Transducers’93), p. 767-769, 1993.
[37]C. T.-C. Nguyen and R.T. Howe, “Microresonator frequency control and stabilization using an integrated micro oven,” 7th Int. Conf. Solid-State Sensors and Actuators, (Transducers’93), p. 1040-1043, 1993.
[38]J.J. Yao and N.C. MacDonald, “A micromachined, single-crystal, tunable resonator,” J. Micromechanics and Microengineering, vol. 5, p. 257-264, 1995.
[39]S.G. Adams, F.M. Bertsch, K.A. Shaw, P.G. Hartwell, N.C. MacDonald, F.C. Moon, “Capacitance based tunable micromechanical resonator,” 8th Int. Conf. Solid-State Sensors and Actuators(Transducers’95), p. 438-441, Stockholm, Sweden, 1995.
[40]C. T.-C. Nguyen and R.T. Howe, “Design and performance of CMOS micromechanical resonator oscillators,” Proc. of IEEE 48th Frequency Control Symposium, p. 127-134, 1994.
[41]W. A. Serdijn, A. C. van der Woerd, J. Davidse, and A. H. M. Van Roermund, “A low-voltage low-power fully integratable automatic gain control for hearing instruments,” IEEE J. Solid-State Circuits, vol. 29, p. 943-946, Aug. 1994.
[42]G. S. Sahota and C. J. Persico, “High dynamic range variable-gain amplifier for CDMA wireless application,” in ISSCC’97, p. 374-375, Session 22, paper 22.6, San Francisco, CA, 1997.
[43]R. Gomez and A. A. Abidi, “A 50-MHz CMOS variable gain amplifier for magnetic data storage system,” IEEE Journal of Solid-State Circuits, vol. 27, p. 935-939, June 1992.
[44]A. Motamed, C. Hwang, and M. Ismail, “A low-voltage low-power wide-range CMOS variable gain amplifier,” IEEE Tans. Circuits Syst.II, vol. 45, p. 800-811, July 1998.
[45]Mohamed. A. I. Mostafa, Sherif H. K. Embabi and Mostafa Elmala, “A 60-dB 246-MHz CMOS variable gain amplifier for subsampling GSM recievers,” VLSI sys. IEEE trans. vol. 11, p. 835-838, Oct. 2003.
[46]K. Hadidi and H. Kobayashi, “A 25 MHz 20dB variable gain amplifier,” IMTC ’94, IEEE Instrumentation and Measurement Technology Conference. IEEE, Pages: 780 - 783 vol.2.10-12, May 1994.