簡易檢索 / 詳目顯示

研究生: 鍾乃祥
Chung, Nai-Hsiang
論文名稱: 藉由黏膜遞送表達刺突蛋白的腺病毒疫苗誘導完整免疫反應預防SARS-CoV-2感染
Full protection against SARS-CoV-2 infection by mucosal delivery of an adenovirus vaccine expressing an engineered spike protein
指導教授: 周彥宏
Chow, Yen-hung
王慧菁
Wang, Hui-Ching
口試委員: 洪錦堂
潘建雄
張聿秀
吳尚蓉
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 119
中文關鍵詞: 新型冠狀病毒疫苗鼻內皮下腺病毒免疫
外文關鍵詞: SARS-CoV-2, Vaccine, Intranasal, Subcutaneous, Adenovirus, Immunity
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • SARS-CoV-2是一種導致嚴重特殊傳染性肺炎的病毒,從2019年出現後對全球人類健康產生了重大影響。迄今為止,SARS-CoV-2已經造成超過6.45億人感染並超過600萬人死亡。其中一些患有嚴重肺部炎症的患者可能因此死亡需要住院治療。在我們的研究中,構建了兩種腺病毒載體疫苗AdCoV2-S(表達完整的刺突蛋白)和AdCoV2-SdTM(表達刪除跨膜區域的刺突蛋白)。除了建構兩種疫苗外,我們測試AdCoV2-S疫苗進行皮下和鼻內注射的免疫成效。結果表明AdCoV2-S進行鼻內比起皮下注射以及AdCoV2-SdTM鼻內注射誘導更多的IgG抗體產生。經鼻內注射AdCoV2-S和AdCoV2-SdTM疫苗後,免疫小鼠的陰道沖洗液和支氣管肺泡灌洗液中都含有抗刺突蛋白的IgA抗體,顯示這兩種疫苗能有效誘導黏膜免疫。病毒中和性試驗中AdCoV2-S鼻內比AdCoV2-S皮下注射和AdCoV2-SdTM鼻內注射能誘導更高的血清中和效價以抑制病毒感染。從IgG1/IgG2a比率和流式細胞儀分析的結果顯示,相較於AdCoV2-SdTM鼻內注射和AdCoV2-S皮下注射,AdCoV2-S鼻內注射似乎更傾向於引起Th2細胞性免疫反應。為了進一步評估我們疫苗的效力,我們進行了SARS-CoV-2攻毒實驗,使用敘利亞倉鼠作為實驗對象。結果顯示兩種AdCoV2疫苗免疫後的小鼠能顯著降低肺病毒量、體重減輕和肺部病理情況。這些結果表明,AdCoV2-S和AdCoV2-SdTM均可有效預防SARS-CoV-2 感染。最後,我們調查倉鼠在預先存在抗腺病毒抗體的情況下對倉鼠進行AdCoV2-S疫苗免疫的影響。我們發現預先存在的抗腺病毒抗體不影響AdCoV2-S皮下或鼻內注射誘導的抗刺突蛋白抗體產生。


    SARS-CoV-2, the virus responsible for COVID-19, has had a significant impact on global health after its outbreak in 2019. To date, it has caused over 645 million infections and more than 6 million deaths. Some patients with severe lung inflammation, which can be fatal, require hospitalization. In our research, we have constructed two adenovirus vector vaccines, AdCoV2-S (expressing complete spike protein) and AdCoV2-SdTM (expressing delete transmembrane domain spike protein). Additionally, we tested the immune response to subcutaneous (s.c.) and intranasal (i.n.) injections of AdCoV2-S. Our results showed that intranasal administration of AdCoV2-S induced higher levels of IgG antibodies compared to subcutaneous administration and AdCoV2-SdTM. The mucosal anti-spike protein IgA antibodies also existed in vaginal washes (vw) and bronchoalveolar lavage fluid (BALF) of AdCoV2-S i.n. and AdCoV2-SdTM i.n.-immunized mice, which indicated that both vaccines were effective in inducing mucosal immunity by intranasal injection. AdCoV2-S i.n. immunization resulted in higher neutralization titers in the serum to inhibit viral infections compared to AdCoV2-SdTM i.n. and AdCoV2-S s.c. immunization. Through IgG1/IgG2a ratio and flow cytometry analysis, the AdCoV2-S i.n.-driven immunity seems to be more biased towards Th2 immunity than that induced by the AdCoV2-SdTM i.n. and AdCoV2-S s.c. vaccines. To further assess the effectiveness of our vaccines, we conducted SARS-CoV-2 challenge experiments in hamsters. We found that AdCoV2-immunized hamsters displayed significantly reduced lung viral loads, body weight loss, and lung pathology. These results suggest that both AdCoV2-S and AdCoV2-SdTM can effectively protect against SARS-CoV-2 infection. Lastly, we examined the effect of pre-existing anti-adenovirus antibodies on AdCoV2 immunization in hamsters. We found that pre-existing anti-adenovirus antibodies did not affect AdCoV2-S (i.n. or s.c.)-induced anti-spike protein antibodies.

    摘要 i ABSTRACT iii ACKNOWLEDGEMENT v ABBREVIATIONS vii CONTENT x LIST OF FIGURES xvi LIST OF TABLES xix A. MAIN STUDY 1 A.1. INTRODUCTION 1 A.1.1. SARS-CoV-2 virus 1 A.1.2. SARS-CoV-2 variant strains 3 A.1.3. SARS-CoV-2 vaccines listed in EUL from WHO 5 A.1.4. Adenovirus vector 8 A.1.5. Respiratory mucosal immunity and intranasal administration 9 A.1.6. Purpose of the study 12 A.2. MATERIALS AND METHODS 13 A.2.1. Ethics statement 13 A.2.2. Cell lines and viruses 13 A.2.3. Animals, immunization, and live SARS-CoV-2 challenge 14 A.2.4. Production of recombinant Ads 16 A.2.5. Western blot 17 A.2.6. Collection of bronchoalveolar lavage fluid (BALF) 18 A.2.7. Enzyme-linked immunosorbent assay (ELISA) 19 A.2.8. Neutralizing assay 21 A.2.9. Enzyme-linked immunoSpot assay (ELISPOT) 21 A.2.10. Culture medium of splenocytes for cytokine ELISA assay 22 A.2.11. Flow cytometry 22 A.2.12. Statistical analysis 23 A.3. RESULTS 24 A.3.1. S and SdTM of SARS-CoV-2 express in Ad-infected cells 24 A.3.2. SARS-CoV-2 S protein-specific antibody responses induced by AdCoV2 vaccines 25 A.3.3. AdCoV2 vaccines induce different ratio of S protein specific IgG1/IgG2a antibody 26 A.3.4. AdCoV2 vaccines induce the protection of the neutralizing antibodies against SARS-CoV-2 27 A.3.5. AdCoV2 vaccines and immunization route affect Th1/Th2-mediated cellular immunity 28 A.3.6. The Ad vector vaccine does not induce inflammation in lung 30 A.3.7. The potential of AdCoV2 vaccines to protect animals against SARS-CoV-2 31 A.3.8. The administration route potential of AdCoV2-S to protect animals against SARS-CoV-2 33 A.3.9. The inducing anti-S antibodies efficiency of AdCoV2 vaccines in the pre-existing anti-Ad antibody environment 34 A.4. FIGURES 36 B. OTHER SARS-COV-2 ASSOCIATED RESEARCH 54 B.1. INTRODUCTION 54 B.1.1. Ferret, nonhuman primate, and Syrian hamster 54 B.1.2. Human ACE2 Transgenic mice 55 B.1.3. Study purpose 55 B.2. MATERIAL AND METHODS 57 B.2.1. Ethics statement 57 B.2.2. Cell lines and viruses 57 B.2.3. Animals, immunization, and live SARS-CoV-2 challenge 58 B.2.4. Production of recombinant Ads 59 B.2.5. Enzyme-linked immunosorbent assay (ELISA) 59 B.2.6. Neutralizing assay 59 B.2.7. Statistical analysis 59 B.3. RESULTS 61 B.3.1. Construction of EF1α-hACE2 Tg-mice and virus challenge tests 61 B.3.2. Similar effects of SARS-CoV-2 Wuhan and Alpha variants on EF1α-hACE2 Tg-mice 62 B.3.3. Virus replication of SARS-CoV-2 in the brains of EF1α-hACE2 Tg-mice 62 B.3.4. Reduced infectivity of Omicron variant of SARS-CoV-2 in EF1α-hACE2 Tg-mice 63 B.3.5. Induction of antibody production and neutralizing activity in the serum in EF1α-hACE2 Tg-mice by AdCoV2-S 63 C. OTHER PARTICIPATING STUDIES 72 LIST OF PUBLICATIONS 72 1. SARS-CoV-2 spike protein enhances MAP4K3/GLK-induced ACE2 stability in COVID-19 73 2. Maternal immunization with recombinant adenovirus-expressing fusion protein protects neonatal cotton rats from respiratory syncytia virus infection by transferring antibodies via breast milk and placenta 79 3. Mutations in VP1 and 5’-UTR affect enterovirus 71 virulence 82 4. Neurotropic EV71 causes encephalitis by engaging intracellular TLR9 to elicit neurotoxic IL-p40-iNOS signaling 86 D. DISCUSSIONS AND CONCLUSIONS 91 D.1. Intranasal vaccination with the SARS-CoV-2 vaccine induces a higher humoral immune response 91 D.2. Modified S protein affects immune response 92 D.3. Intranasal administration can early inhibit SARS-CoV-2 infection 93 D.4. Different administration routes induce different cellular immune response 94 D.5. S protein can inhibit the expression of IFN-γ in CD4 T cells 94 D.6. The challenges in the development of adenoviral vectors 95 D.7. Clinical trial of SARS-CoV-2 mucosal vaccine 97 D.8. EF1-α hACE2 Tg-mice as a capable animal model for SARS-CoV-2 98 D.9. The production of ACE2+ exosomes induced by SARS-CoV-2 affects its infection 99 D.10. SARS-CoV-2 causes the neuron associated long term symptoms 99 REFERENCES 101 LIST OF PUBLICATIONS 116 RESUME 117

    1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R et al. 2020. A novel coronavirus from patients with pneumonia in china, 2019. N Engl J Med. 382(8):727-733.
    2. Zhang C, Zheng W, Huang X, Bell EW, Zhou X, Zhang Y. 2020. Protein structure and sequence reanalysis of 2019-ncov genome refutes snakes as its intermediate host and the unique similarity between its spike protein insertions and hiv-1. J Proteome Res. 19(4):1351-1360.
    3. Yadav R, Chaudhary JK, Jain N, Chaudhary PK, Khanra S, Dhamija P, Sharma A, Kumar A, Handu S. 2021. Role of structural and non-structural proteins and therapeutic targets of sars-cov-2 for covid-19. Cells. 10(4).
    4. Redondo N, Zaldivar-Lopez S, Garrido JJ, Montoya M. 2021. Sars-cov-2 accessory proteins in viral pathogenesis: Knowns and unknowns. Front Immunol. 12:708264.
    5. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L et al. 2020. Structure of the sars-cov-2 spike receptor-binding domain bound to the ace2 receptor. Nature. 581(7807):215-220.
    6. Gorgun D, Lihan M, Kapoor K, Tajkhorshid E. 2021. Binding mode of sars-cov-2 fusion peptide to human cellular membrane. Biophys J. 120(14):2914-2926.
    7. Broer R, Boson B, Spaan W, Cosset FL, Corver J. 2006. Important role for the transmembrane domain of severe acute respiratory syndrome coronavirus spike protein during entry. J Virol. 80(3):1302-1310.
    8. Shen XR, Geng R, Li Q, Chen Y, Li SF, Wang Q, Min J, Yang Y, Li B, Jiang RD et al. 2022. Ace2-independent infection of t lymphocytes by sars-cov-2. Signal Transduct Target Ther. 7(1):83.
    9. Wang K, Chen W, Zhang Z, Deng Y, Lian JQ, Du P, Wei D, Zhang Y, Sun XX, Gong L et al. 2020. Cd147-spike protein is a novel route for sars-cov-2 infection to host cells. Signal Transduct Target Ther. 5(1):283.
    10. Gu Y, Cao J, Zhang X, Gao H, Wang Y, Wang J, He J, Jiang X, Zhang J, Shen G et al. 2022. Receptome profiling identifies kremen1 and asgr1 as alternative functional receptors of sars-cov-2. Cell Res. 32(1):24-37.
    11. Wang R, Zhang Q, Zhang R, Aw ZQ, Chen P, Wong YH, Hong J, Ju B, Shi X, Ding Q et al. 2022. Sars-cov-2 omicron variants reduce antibody neutralization and acquire usage of mouse ace2. Front Immunol. 13:854952.
    12. Baimakanova GE, Khatkov IE, Dudina GA, Chegodar AS, Rumyantsev KA, Sviridov FS, Osipova AV, Danishevich AM, Noskova KK, Pinashina ES et al. 2021. [clinical portrait of a patient with covid-19. The experience of a multidisciplinary clinic]. Ter Arkh. 93(11):1283-1289.
    13. Pascarella G, Strumia A, Piliego C, Bruno F, Del Buono R, Costa F, Scarlata S, Agro FE. 2020. Covid-19 diagnosis and management: A comprehensive review. J Intern Med. 288(2):192-206.
    14. Lerner ZI, Burke RV, McCall J, Leigh A, Glass M. 2020. A case report of covid-19 in new orleans, louisiana: Highlighting the complexities of prognostication in a critically ill patient. Palliat Med Rep. 1(1):227-231.
    15. Dennis A, Wamil M, Alberts J, Oben J, Cuthbertson DJ, Wootton D, Crooks M, Gabbay M, Brady M, Hishmeh L et al. 2021. Multiorgan impairment in low-risk individuals with post-covid-19 syndrome: A prospective, community-based study. BMJ Open. 11(3):e048391.
    16. Carvalho-Schneider C, Laurent E, Lemaignen A, Beaufils E, Bourbao-Tournois C, Laribi S, Flament T, Ferreira-Maldent N, Bruyere F, Stefic K et al. 2021. Follow-up of adults with noncritical covid-19 two months after symptom onset. Clin Microbiol Infect. 27(2):258-263.
    17. Huang C, Huang L, Wang Y, Li X, Ren L, Gu X, Kang L, Guo L, Liu M, Zhou X et al. 2021. 6-month consequences of covid-19 in patients discharged from hospital: A cohort study. Lancet. 397(10270):220-232.
    18. Garrigues E, Janvier P, Kherabi Y, Le Bot A, Hamon A, Gouze H, Doucet L, Berkani S, Oliosi E, Mallart E et al. 2020. Post-discharge persistent symptoms and health-related quality of life after hospitalization for covid-19. J Infect. 81(6):e4-e6.
    19. Rezaei F, Ghelichi-Ghojogh M, Hemmati A, Ghaem H, Mirahmadizadeh A. 2021. Risk factors for covid-19 severity and mortality among inpatients in southern iran. J Prev Med Hyg. 62(4):E808-E813.
    20. Buscemi S, Corleo D, Randazzo C. 2021. Risk factors for covid-19: Diabetes, hypertension, and obesity. Adv Exp Med Biol. 1353:115-129.
    21. Weisblum Y, Schmidt F, Zhang F, DaSilva J, Poston D, Lorenzi JC, Muecksch F, Rutkowska M, Hoffmann HH, Michailidis E et al. 2020. Escape from neutralizing antibodies by sars-cov-2 spike protein variants. Elife. 9.
    22. Peter AS, Gruner E, Socher E, Fraedrich K, Richel E, Mueller-Schmucker S, Cordsmeier A, Ensser A, Sticht H, Uberla K. 2022. Characterization of sars-cov-2 escape mutants to a pair of neutralizing antibodies targeting the rbd and the ntd. Int J Mol Sci. 23(15).
    23. Augusto G, Mohsen MO, Zinkhan S, Liu X, Vogel M, Bachmann MF. 2022. In vitro data suggest that indian delta variant b.1.617 of sars-cov-2 escapes neutralization by both receptor affinity and immune evasion. Allergy. 77(1):111-117.
    24. Cao Y, Wang J, Jian F, Xiao T, Song W, Yisimayi A, Huang W, Li Q, Wang P, An R et al. 2022. Omicron escapes the majority of existing sars-cov-2 neutralizing antibodies. Nature. 602(7898):657-663.
    25. Carrazco-Montalvo A, Bruno A, de Mora D, Olmedo M, Garces J, Paez M, Regato-Arrata M, Gonzalez M, Romero J, Mestanza O et al. 2021. First report of sars-cov-2 lineage b.1.1.7 (alpha variant) in ecuador, january 2021. Infect Drug Resist. 14:5183-5188.
    26. Gobeil SM, Janowska K, McDowell S, Mansouri K, Parks R, Stalls V, Kopp MF, Manne K, Li D, Wiehe K et al. 2021. Effect of natural mutations of sars-cov-2 on spike structure, conformation, and antigenicity. Science. 373(6555).
    27. Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD, Pearson CAB, Russell TW, Tully DC, Washburne AD et al. 2021. Estimated transmissibility and impact of sars-cov-2 lineage b.1.1.7 in england. Science. 372(6538).
    28. Meng B, Kemp SA, Papa G, Datir R, Ferreira I, Marelli S, Harvey WT, Lytras S, Mohamed A, Gallo G et al. 2021. Recurrent emergence of sars-cov-2 spike deletion h69/v70 and its role in the alpha variant b.1.1.7. Cell Rep. 35(13):109292.
    29. Quinonez E, Vahed M, Hashemi Shahraki A, Mirsaeidi M. 2021. Structural analysis of the novel variants of sars-cov-2 and forecasting in north america. Viruses. 13(5).
    30. Wu H, Xing N, Meng K, Fu B, Xue W, Dong P, Tang W, Xiao Y, Liu G, Luo H et al. 2021. Nucleocapsid mutations r203k/g204r increase the infectivity, fitness, and virulence of sars-cov-2. Cell Host Microbe. 29(12):1788-1801 e1786.
    31. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY et al. 2020. Early transmission dynamics in wuhan, china, of novel coronavirus-infected pneumonia. N Engl J Med. 382(13):1199-1207.
    32. Singh J, Rahman SA, Ehtesham NZ, Hira S, Hasnain SE. 2021. Sars-cov-2 variants of concern are emerging in india. Nat Med. 27(7):1131-1133.
    33. Liu C, Ginn HM, Dejnirattisai W, Supasa P, Wang B, Tuekprakhon A, Nutalai R, Zhou D, Mentzer AJ, Zhao Y et al. 2021. Reduced neutralization of sars-cov-2 b.1.617 by vaccine and convalescent serum. Cell. 184(16):4220-4236 e4213.
    34. Wilhelm A, Toptan T, Pallas C, Wolf T, Goetsch U, Gottschalk R, Vehreschild M, Ciesek S, Widera M. 2021. Antibody-mediated neutralization of authentic sars-cov-2 b.1.617 variants harboring l452r and t478k/e484q. Viruses. 13(9).
    35. Di Giacomo S, Mercatelli D, Rakhimov A, Giorgi FM. 2021. Preliminary report on severe acute respiratory syndrome coronavirus 2 (sars-cov-2) spike mutation t478k. J Med Virol. 93(9):5638-5643.
    36. Saito A, Irie T, Suzuki R, Maemura T, Nasser H, Uriu K, Kosugi Y, Shirakawa K, Sadamasu K, Kimura I et al. 2022. Enhanced fusogenicity and pathogenicity of sars-cov-2 delta p681r mutation. Nature. 602(7896):300-306.
    37. Liu H, Zhang J, Cai J, Deng X, Peng C, Chen X, Yang J, Wu Q, Chen X, Chen Z et al. 2022. Investigating vaccine-induced immunity and its effect in mitigating sars-cov-2 epidemics in china. BMC Med. 20(1):37.
    38. Gao SJ, Guo H, Luo G. 2022. Omicron variant (b.1.1.529) of sars-cov-2, a global urgent public health alert! J Med Virol. 94(4):1255-1256.
    39. Bansal K, Kumar S. 2022. Mutational cascade of sars-cov-2 leading to evolution and emergence of omicron variant. Virus Res. 315:198765.
    40. Liu Y, Rocklov J. 2022. The effective reproductive number of the omicron variant of sars-cov-2 is several times relative to delta. J Travel Med. 29(3).
    41. Gong SY, Chatterjee D, Richard J, Prevost J, Tauzin A, Gasser R, Bo Y, Vezina D, Goyette G, Gendron-Lepage G et al. 2021. Contribution of single mutations to selected sars-cov-2 emerging variants spike antigenicity. Virology. 563:134-145.
    42. Tuekprakhon A, Nutalai R, Dijokaite-Guraliuc A, Zhou D, Ginn HM, Selvaraj M, Liu C, Mentzer AJ, Supasa P, Duyvesteyn HME et al. 2022. Antibody escape of sars-cov-2 omicron ba.4 and ba.5 from vaccine and ba.1 serum. Cell. 185(14):2422-2433 e2413.
    43. Tegally H, Moir M, Everatt J, Giovanetti M, Scheepers C, Wilkinson E, Subramoney K, Makatini Z, Moyo S, Amoako DG et al. 2022. Emergence of sars-cov-2 omicron lineages ba.4 and ba.5 in south africa. Nat Med. 28(9):1785-1790.
    44. Arora P, Zhang L, Rocha C, Graichen L, Nehlmeier I, Kempf A, Cossmann A, Ramos GM, Baier E, Tampe B et al. 2022. The sars-cov-2 delta-omicron recombinant lineage (xd) exhibits immune-escape properties similar to the omicron (ba.1) variant. Int J Mol Sci. 23(22).
    45. Singh P, Sharma K, Shaw D, Bhargava A, Negi SS. 2022. Mosaic recombination inflicted various sars-cov-2 lineages to emerge into novel virus variants: A review update. Indian J Clin Biochem.1-8.
    46. Perrin P, Morgeaux S. 1995. Inactivation of DNA by beta-propiolactone. Biologicals. 23(3):207-211.
    47. Tian JH, Patel N, Haupt R, Zhou H, Weston S, Hammond H, Logue J, Portnoff AD, Norton J, Guebre-Xabier M et al. 2021. Sars-cov-2 spike glycoprotein vaccine candidate nvx-cov2373 immunogenicity in baboons and protection in mice. Nat Commun. 12(1):372.
    48. Guebre-Xabier M, Patel N, Tian JH, Zhou B, Maciejewski S, Lam K, Portnoff AD, Massare MJ, Frieman MB, Piedra PA et al. 2020. Nvx-cov2373 vaccine protects cynomolgus macaque upper and lower airways against sars-cov-2 challenge. Vaccine. 38(50):7892-7896.
    49. Oo WM, Giri P, de Souza A. 2021. Astrazeneca covid-19 vaccine and guillain- barre syndrome in tasmania: A causal link? J Neuroimmunol. 360:577719.
    50. Cari L, Alhosseini MN, Fiore P, Pierno S, Pacor S, Bergamo A, Sava G, Nocentini G. 2021. Cardiovascular, neurological, and pulmonary events following vaccination with the bnt162b2, chadox1 ncov-19, and ad26.Cov2.S vaccines: An analysis of european data. J Autoimmun. 125:102742.
    51. Woo EJ, Mba-Jonas A, Dimova RB, Alimchandani M, Zinderman CE, Nair N. 2021. Association of receipt of the ad26.Cov2.S covid-19 vaccine with presumptive guillain-barre syndrome, february-july 2021. JAMA. 326(16):1606-1613.
    52. Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA, Eichinger S. 2021. Thrombotic thrombocytopenia after chadox1 ncov-19 vaccination. N Engl J Med. 384(22):2092-2101.
    53. Greene SK, Rett MD, Vellozzi C, Li L, Kulldorff M, Marcy SM, Daley MF, Belongia EA, Baxter R, Fireman BH et al. 2013. Guillain-barre syndrome, influenza vaccination, and antecedent respiratory and gastrointestinal infections: A case-centered analysis in the vaccine safety datalink, 2009-2011. PLoS One. 8(6):e67185.
    54. Leung C. 2020. A lesson learnt from the emergence of zika virus: What flaviviruses can trigger guillain-barre syndrome? J Med Virol.
    55. Patone M, Handunnetthi L, Saatci D, Pan J, Katikireddi SV, Razvi S, Hunt D, Mei XW, Dixon S, Zaccardi F et al. 2021. Neurological complications after first dose of covid-19 vaccines and sars-cov-2 infection. Nat Med. 27(12):2144-2153.
    56. Robinson CM, Singh G, Lee JY, Dehghan S, Rajaiya J, Liu EB, Yousuf MA, Betensky RA, Jones MS, Dyer DW et al. 2013. Molecular evolution of human adenoviruses. Sci Rep. 3:1812.
    57. Shieh WJ. 2022. Human adenovirus infections in pediatric population - an update on clinico-pathologic correlation. Biomed J. 45(1):38-49.
    58. McGrory WJ, Bautista DS, Graham FL. 1988. A simple technique for the rescue of early region i mutations into infectious human adenovirus type 5. Virology. 163(2):614-617.
    59. Wold WS, Tollefson AE, Hermiston TW. 1995. E3 transcription unit of adenovirus. Curr Top Microbiol Immunol. 199 ( Pt 1):237-274.
    60. Gao GP, Yang Y, Wilson JM. 1996. Biology of adenovirus vectors with e1 and e4 deletions for liver-directed gene therapy. J Virol. 70(12):8934-8943.
    61. Koup RA, Lamoreaux L, Zarkowsky D, Bailer RT, King CR, Gall JG, Brough DE, Graham BS, Roederer M. 2009. Replication-defective adenovirus vectors with multiple deletions do not induce measurable vector-specific t cells in human trials. J Virol. 83(12):6318-6322.
    62. Christ M, Louis B, Stoeckel F, Dieterle A, Grave L, Dreyer D, Kintz J, Ali Hadji D, Lusky M, Mehtali M. 2000. Modulation of the inflammatory properties and hepatotoxicity of recombinant adenovirus vectors by the viral e4 gene products. Hum Gene Ther. 11(3):415-427.
    63. Kochanek S, Clemens PR, Mitani K, Chen HH, Chan S, Caskey CT. 1996. A new adenoviral vector: Replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and beta-galactosidase. Proc Natl Acad Sci U S A. 93(12):5731-5736.
    64. Parks RJ, Chen L, Anton M, Sankar U, Rudnicki MA, Graham FL. 1996. A helper-dependent adenovirus vector system: Removal of helper virus by cre-mediated excision of the viral packaging signal. Proc Natl Acad Sci U S A. 93(24):13565-13570.
    65. Muruve DA, Cotter MJ, Zaiss AK, White LR, Liu Q, Chan T, Clark SA, Ross PJ, Meulenbroek RA, Maelandsmo GM et al. 2004. Helper-dependent adenovirus vectors elicit intact innate but attenuated adaptive host immune responses in vivo. J Virol. 78(11):5966-5972.
    66. Lee D, Liu J, Junn HJ, Lee EJ, Jeong KS, Seol DW. 2019. No more helper adenovirus: Production of gutless adenovirus (glad) free of adenovirus and replication-competent adenovirus (rca) contaminants. Exp Mol Med. 51(10):1-18.
    67. Azab B, Dash R, Das SK, Bhutia SK, Shen XN, Quinn BA, Sarkar S, Wang XY, Hedvat M, Dmitriev IP et al. 2012. Enhanced delivery of mda-7/il-24 using a serotype chimeric adenovirus (ad.5/3) in combination with the apogossypol derivative bi-97c1 (sabutoclax) improves therapeutic efficacy in low car colorectal cancer cells. J Cell Physiol. 227(5):2145-2153.
    68. Li X, Mao Q, Wang D, Zhang W, Xia H. 2012. A fiber chimeric crad vector ad5/11-d24 double-armed with trail and arresten for enhanced glioblastoma therapy. Hum Gene Ther. 23(6):589-596.
    69. Takamura S. 2018. Niches for the long-term maintenance of tissue-resident memory t cells. Front Immunol. 9:1214.
    70. Pizzolla A, Wang Z, Groom JR, Kedzierska K, Brooks AG, Reading PC, Wakim LM. 2017. Nasal-associated lymphoid tissues (nalts) support the recall but not priming of influenza virus-specific cytotoxic t cells. Proc Natl Acad Sci U S A. 114(20):5225-5230.
    71. Silva-Sanchez A, Randall TD. 2020. Role of ibalt in respiratory immunity. Curr Top Microbiol Immunol. 426:21-43.
    72. Gebhardt T, Wakim LM, Eidsmo L, Reading PC, Heath WR, Carbone FR. 2009. Memory t cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat Immunol. 10(5):524-530.
    73. Teijaro JR, Turner D, Pham Q, Wherry EJ, Lefrancois L, Farber DL. 2011. Cutting edge: Tissue-retentive lung memory cd4 t cells mediate optimal protection to respiratory virus infection. J Immunol. 187(11):5510-5514.
    74. Schenkel JM, Masopust D. 2014. Tissue-resident memory t cells. Immunity. 41(6):886-897.
    75. Jiang X, Clark RA, Liu L, Wagers AJ, Fuhlbrigge RC, Kupper TS. 2012. Skin infection generates non-migratory memory cd8+ t(rm) cells providing global skin immunity. Nature. 483(7388):227-231.
    76. Lee CM, Oh JE. 2022. Resident memory b cells in barrier tissues. Front Immunol. 13:953088.
    77. MacLean AJ, Richmond N, Koneva L, Attar M, Medina CAP, Thornton EE, Gomes AC, El-Turabi A, Bachmann MF, Rijal P et al. 2022. Secondary influenza challenge triggers resident memory b cell migration and rapid relocation to boost antibody secretion at infected sites. Immunity. 55(4):718-733 e718.
    78. Nelson SA, Sant AJ. 2021. Potentiating lung mucosal immunity through intranasal vaccination. Front Immunol. 12:808527.
    79. Lavelle EC, Ward RW. 2022. Mucosal vaccines - fortifying the frontiers. Nat Rev Immunol. 22(4):236-250.
    80. Hassan AO, Kafai NM, Dmitriev IP, Fox JM, Smith BK, Harvey IB, Chen RE, Winkler ES, Wessel AW, Case JB et al. 2020. A single-dose intranasal chad vaccine protects upper and lower respiratory tracts against sars-cov-2. Cell. 183(1):169-184 e113.
    81. van Doremalen N, Purushotham JN, Schulz JE, Holbrook MG, Bushmaker T, Carmody A, Port JR, Yinda CK, Okumura A, Saturday G et al. 2021. Intranasal chadox1 ncov-19/azd1222 vaccination reduces viral shedding after sars-cov-2 d614g challenge in preclinical models. Sci Transl Med. 13(607).
    82. Wu S, Huang J, Zhang Z, Wu J, Zhang J, Hu H, Zhu T, Zhang J, Luo L, Fan P et al. 2021. Safety, tolerability, and immunogenicity of an aerosolised adenovirus type-5 vector-based covid-19 vaccine (ad5-ncov) in adults: Preliminary report of an open-label and randomised phase 1 clinical trial. Lancet Infect Dis. 21(12):1654-1664.
    83. Dhama K, Dhawan M, Tiwari R, Emran TB, Mitra S, Rabaan AA, Alhumaid S, Alawi ZA, Al Mutair A. 2022. Covid-19 intranasal vaccines: Current progress, advantages, prospects, and challenges. Hum Vaccin Immunother. 18(5):2045853.
    84. Brincks EL, Roberts AD, Cookenham T, Sell S, Kohlmeier JE, Blackman MA, Woodland DL. 2013. Antigen-specific memory regulatory cd4+foxp3+ t cells control memory responses to influenza virus infection. J Immunol. 190(7):3438-3446.
    85. Kossila M, Jauhiainen S, Laukkanen MO, Lehtolainen P, Jaaskelainen M, Turunen P, Loimas S, Wahlfors J, Yla-Herttuala S. 2002. Improvement in adenoviral gene transfer efficiency after preincubation at +37 degrees c in vitro and in vivo. Mol Ther. 5(1):87-93.
    86. Russell WC. 2000. Update on adenovirus and its vectors. J Gen Virol. 81(Pt 11):2573-2604.
    87. Shao HY, Yu SL, Sia C, Chen Y, Chitra E, Chen IH, Venkatesan N, Leng CH, Chong P, Chow YH. 2009. Immunogenic properties of rsv-b1 fusion (f) protein gene-encoding recombinant adenoviruses. Vaccine. 27(40):5460-5471.
    88. Shao HY, Lin YW, Yu SL, Lin HY, Chitra E, Chang YC, Sia C, Chong P, Hsu MT, Wei OL et al. 2011. Immunoprotectivity of hla-a2 ctl peptides derived from respiratory syncytial virus fusion protein in hla-a2 transgenic mouse. PLoS One. 6(9):e25500.
    89. Holdsworth SR, Kitching AR, Tipping PG. 1999. Th1 and th2 t helper cell subsets affect patterns of injury and outcomes in glomerulonephritis. Kidney Int. 55(4):1198-1216.
    90. Poland GA, Ovsyannikova IG, Kennedy RB. 2020. Sars-cov-2 immunity: Review and applications to phase 3 vaccine candidates. Lancet. 396(10262):1595-1606.
    91. Imai M, Iwatsuki-Horimoto K, Hatta M, Loeber S, Halfmann PJ, Nakajima N, Watanabe T, Ujie M, Takahashi K, Ito M et al. 2020. Syrian hamsters as a small animal model for sars-cov-2 infection and countermeasure development. Proc Natl Acad Sci U S A. 117(28):16587-16595.
    92. Zhu FC, Guan XH, Li YH, Huang JY, Jiang T, Hou LH, Li JX, Yang BF, Wang L, Wang WJ et al. 2020. Immunogenicity and safety of a recombinant adenovirus type-5-vectored covid-19 vaccine in healthy adults aged 18 years or older: A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 396(10249):479-488.
    93. Priddy FH, Brown D, Kublin J, Monahan K, Wright DP, Lalezari J, Santiago S, Marmor M, Lally M, Novak RM et al. 2008. Safety and immunogenicity of a replication-incompetent adenovirus type 5 hiv-1 clade b gag/pol/nef vaccine in healthy adults. Clin Infect Dis. 46(11):1769-1781.
    94. Croyle MA, Patel A, Tran KN, Gray M, Zhang Y, Strong JE, Feldmann H, Kobinger GP. 2008. Nasal delivery of an adenovirus-based vaccine bypasses pre-existing immunity to the vaccine carrier and improves the immune response in mice. PLoS One. 3(10):e3548.
    95. Chu H, Chan JF, Yuen KY. 2022. Animal models in sars-cov-2 research. Nat Methods. 19(4):392-394.
    96. Kim YI, Yu KM, Koh JY, Kim EH, Kim SM, Kim EJ, Casel MAB, Rollon R, Jang SG, Song MS et al. 2022. Age-dependent pathogenic characteristics of sars-cov-2 infection in ferrets. Nat Commun. 13(1):21.
    97. Kutter JS, de Meulder D, Bestebroer TM, Lexmond P, Mulders A, Richard M, Fouchier RAM, Herfst S. 2021. Sars-cov and sars-cov-2 are transmitted through the air between ferrets over more than one meter distance. Nat Commun. 12(1):1653.
    98. Jiao L, Li H, Xu J, Yang M, Ma C, Li J, Zhao S, Wang H, Yang Y, Yu W et al. 2021. The gastrointestinal tract is an alternative route for sars-cov-2 infection in a nonhuman primate model. Gastroenterology. 160(5):1647-1661.
    99. Singh DK, Singh B, Ganatra SR, Gazi M, Cole J, Thippeshappa R, Alfson KJ, Clemmons E, Gonzalez O, Escobedo R et al. 2021. Responses to acute infection with sars-cov-2 in the lungs of rhesus macaques, baboons and marmosets. Nat Microbiol. 6(1):73-86.
    100. Francis ME, Goncin U, Kroeker A, Swan C, Ralph R, Lu Y, Etzioni AL, Falzarano D, Gerdts V, Machtaler S et al. 2021. Sars-cov-2 infection in the syrian hamster model causes inflammation as well as type i interferon dysregulation in both respiratory and non-respiratory tissues including the heart and kidney. PLoS Pathog. 17(7):e1009705.
    101. Lutz C, Maher L, Lee C, Kang W. 2020. Covid-19 preclinical models: Human angiotensin-converting enzyme 2 transgenic mice. Hum Genomics. 14(1):20.
    102. Winkler ES, Bailey AL, Kafai NM, Nair S, McCune BT, Yu J, Fox JM, Chen RE, Earnest JT, Keeler SP et al. 2020. Sars-cov-2 infection of human ace2-transgenic mice causes severe lung inflammation and impaired function. Nat Immunol. 21(11):1327-1335.
    103. Jeong H, Woo Lee Y, Park IH, Noh H, Kim SH, Kim J, Jeon D, Jang HJ, Oh J, On D et al. 2022. Comparison of the pathogenesis of sars-cov-2 infection in k18-hace2 mouse and syrian golden hamster models. Dis Model Mech. 15(11).
    104. Kim YI, Kim SG, Kim SM, Kim EH, Park SJ, Yu KM, Chang JH, Kim EJ, Lee S, Casel MAB et al. 2020. Infection and rapid transmission of sars-cov-2 in ferrets. Cell Host Microbe. 27(5):704-709 e702.
    105. Chuang HC, Hsueh CH, Hsu PM, Huang RH, Tsai CY, Chung NH, Chow YH, Tan TH. 2022. Sars-cov-2 spike protein enhances map4k3/glk-induced ace2 stability in covid-19. EMBO Mol Med. 14(9):e15904.
    106. Chua RL, Lukassen S, Trump S, Hennig BP, Wendisch D, Pott F, Debnath O, Thurmann L, Kurth F, Volker MT et al. 2020. Covid-19 severity correlates with airway epithelium-immune cell interactions identified by single-cell analysis. Nat Biotechnol. 38(8):970-979.
    107. Chuang HC, Lan JL, Chen DY, Yang CY, Chen YM, Li JP, Huang CY, Liu PE, Wang X, Tan TH. 2011. The kinase glk controls autoimmunity and nf-kappab signaling by activating the kinase pkc-theta in t cells. Nat Immunol. 12(11):1113-1118.
    108. Shao HY, Chen YC, Chung NH, Lu YJ, Chang CK, Yu SL, Liu CC, Chow YH. 2018. Maternal immunization with a recombinant adenovirus-expressing fusion protein protects neonatal cotton rats from respiratory syncytia virus infection by transferring antibodies via breast milk and placenta. Virology. 521:181-189.
    109. Delgado MF, Coviello S, Monsalvo AC, Melendi GA, Hernandez JZ, Batalle JP, Diaz L, Trento A, Chang HY, Mitzner W et al. 2009. Lack of antibody affinity maturation due to poor toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease. Nat Med. 15(1):34-41.
    110. Polack FP, Teng MN, Collins PL, Prince GA, Exner M, Regele H, Lirman DD, Rabold R, Hoffman SJ, Karp CL et al. 2002. A role for immune complexes in enhanced respiratory syncytial virus disease. J Exp Med. 196(6):859-865.
    111. Solomon T, Lewthwaite P, Perera D, Cardosa MJ, McMinn P, Ooi MH. 2010. Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis. 10(11):778-790.
    112. Lee TC, Guo HR, Su HJ, Yang YC, Chang HL, Chen KT. 2009. Diseases caused by enterovirus 71 infection. Pediatr Infect Dis J. 28(10):904-910.
    113. Lin JY, Shih SR. 2014. Cell and tissue tropism of enterovirus 71 and other enteroviruses infections. J Biomed Sci. 21(1):18.
    114. Chang CK, Wu SR, Chen YC, Lee KJ, Chung NH, Lu YJ, Yu SL, Liu CC, Chow YH. 2018. Mutations in vp1 and 5'-utr affect enterovirus 71 virulence. Sci Rep. 8(1):6688.
    115. Long L, Xu L, Xiao Z, Hu S, Luo R, Wang H, Lu X, Xu Z, Yao X, Zhou L et al. 2016. Neurological complications and risk factors of cardiopulmonary failure of ev-a71-related hand, foot and mouth disease. Sci Rep. 6:23444.
    116. Zhang YC, Li XW, Zhu XD, Qian SY, Shang YX, Li BR, Liu XL. 2010. Clinical characteristics and treatment of severe encephalitis associated with neurogenic pulmonary edema caused by enterovirus 71 in china. World J Emerg Med. 1(2):108-113.
    117. Chen BS, Lee HC, Lee KM, Gong YN, Shih SR. 2020. Enterovirus and encephalitis. Front Microbiol. 11:261.
    118. Coutelier JP, Van Broeck J, Wolf SF. 1995. Interleukin-12 gene expression after viral infection in the mouse. J Virol. 69(3):1955-1958.
    119. Kapil P, Atkinson R, Ramakrishna C, Cua DJ, Bergmann CC, Stohlman SA. 2009. Interleukin-12 (il-12), but not il-23, deficiency ameliorates viral encephalitis without affecting viral control. J Virol. 83(12):5978-5986.
    120. Lai RH, Chow YH, Chung NH, Chen TC, Shie FS, Juang JL. 2022. Neurotropic ev71 causes encephalitis by engaging intracellular tlr9 to elicit neurotoxic il12-p40-inos signaling. Cell Death Dis. 13(4):328.
    121. Hassan AO, Shrihari S, Gorman MJ, Ying B, Yuan D, Raju S, Chen RE, Dmitriev IP, Kashentseva E, Adams LJ et al. 2021. An intranasal vaccine durably protects against sars-cov-2 variants in mice. Cell Rep. 36(4):109452.
    122. Bricker TL, Darling TL, Hassan AO, Harastani HH, Soung A, Jiang X, Dai YN, Zhao H, Adams LJ, Holtzman MJ et al. 2021. A single intranasal or intramuscular immunization with chimpanzee adenovirus-vectored sars-cov-2 vaccine protects against pneumonia in hamsters. Cell Rep. 36(3):109400.
    123. Feng L, Wang Q, Shan C, Yang C, Feng Y, Wu J, Liu X, Zhou Y, Jiang R, Hu P et al. 2020. An adenovirus-vectored covid-19 vaccine confers protection from sars-cov-2 challenge in rhesus macaques. Nat Commun. 11(1):4207.
    124. Rydyznski Moderbacher C, Ramirez SI, Dan JM, Grifoni A, Hastie KM, Weiskopf D, Belanger S, Abbott RK, Kim C, Choi J et al. 2020. Antigen-specific adaptive immunity to sars-cov-2 in acute covid-19 and associations with age and disease severity. Cell. 183(4):996-1012 e1019.
    125. Teo SP. 2022. Review of covid-19 mrna vaccines: Bnt162b2 and mrna-1273. J Pharm Pract. 35(6):947-951.
    126. Dai L, Gao GF. 2021. Viral targets for vaccines against covid-19. Nat Rev Immunol. 21(2):73-82.
    127. Pallesen J, Wang N, Corbett KS, Wrapp D, Kirchdoerfer RN, Turner HL, Cottrell CA, Becker MM, Wang L, Shi W et al. 2017. Immunogenicity and structures of a rationally designed prefusion mers-cov spike antigen. Proc Natl Acad Sci U S A. 114(35):E7348-E7357.
    128. Amanat F, Strohmeier S, Rathnasinghe R, Schotsaert M, Coughlan L, Garcia-Sastre A, Krammer F. 2021. Introduction of two prolines and removal of the polybasic cleavage site lead to higher efficacy of a recombinant spike-based sars-cov-2 vaccine in the mouse model. mBio. 12(2).
    129. Wang J, Yin XG, Wen Y, Lu J, Zhang RY, Zhou SH, Liao CM, Wei HW, Guo J. 2022. Mpla-adjuvanted liposomes encapsulating s-trimer or rbd or s1, but not s-ecd, elicit robust neutralization against sars-cov-2 and variants of concern. J Med Chem. 65(4):3563-3574.
    130. Chen TH, Yang YL, Jan JT, Chen CC, Wu SC. 2021. Site-specific glycan-masking/unmasking hemagglutinin antigen design to elicit broadly neutralizing and stem-binding antibodies against highly pathogenic avian influenza h5n1 virus infections. Front Immunol. 12:692700.
    131. Chen JR, Yu YH, Tseng YC, Chiang WL, Chiang MF, Ko YA, Chiu YK, Ma HH, Wu CY, Jan JT et al. 2014. Vaccination of monoglycosylated hemagglutinin induces cross-strain protection against influenza virus infections. Proc Natl Acad Sci U S A. 111(7):2476-2481.
    132. An Y, Parsons LM, Jankowska E, Melnyk D, Joshi M, Cipollo JF. 2019. N-glycosylation of seasonal influenza vaccine hemagglutinins: Implication for potency testing and immune processing. J Virol. 93(2).
    133. Huang HY, Liao HY, Chen X, Wang SW, Cheng CW, Shahed-Al-Mahmud M, Liu YM, Mohapatra A, Chen TH, Lo JM et al. 2022. Vaccination with sars-cov-2 spike protein lacking glycan shields elicits enhanced protective responses in animal models. Sci Transl Med. 14(639):eabm0899.
    134. Langel SN, Johnson S, Martinez CI, Tedjakusuma SN, Peinovich N, Dora EG, Kuehl PJ, Irshad H, Barrett EG, Werts AD et al. 2022. Adenovirus type 5 sars-cov-2 vaccines delivered orally or intranasally reduced disease severity and transmission in a hamster model. Sci Transl Med. 14(658):eabn6868.
    135. Othman M, Labelle A, Mazzetti I, Elbatarny HS, Lillicrap D. 2007. Adenovirus-induced thrombocytopenia: The role of von willebrand factor and p-selectin in mediating accelerated platelet clearance. Blood. 109(7):2832-2839.
    136. Baker AT, Boyd RJ, Sarkar D, Teijeira-Crespo A, Chan CK, Bates E, Waraich K, Vant J, Wilson E, Truong CD et al. 2021. Chadox1 interacts with car and pf4 with implications for thrombosis with thrombocytopenia syndrome. Sci Adv. 7(49):eabl8213.
    137. Zheng Y, Zhao J, Li J, Guo Z, Sheng J, Ye X, Jin G, Wang C, Chai W, Yan J et al. 2021. Sars-cov-2 spike protein causes blood coagulation and thrombosis by competitive binding to heparan sulfate. Int J Biol Macromol. 193(Pt B):1124-1129.
    138. Zhang S, Liu Y, Wang X, Yang L, Li H, Wang Y, Liu M, Zhao X, Xie Y, Yang Y et al. 2020. Sars-cov-2 binds platelet ace2 to enhance thrombosis in covid-19. J Hematol Oncol. 13(1):120.
    139. Chalkias S, Harper C, Vrbicky K, Walsh SR, Essink B, Brosz A, McGhee N, Tomassini JE, Chen X, Chang Y et al. 2022. A bivalent omicron-containing booster vaccine against covid-19. N Engl J Med. 387(14):1279-1291.
    140. Li X, Wang L, Liu J, Fang E, Liu X, Peng Q, Zhang Z, Li M, Liu X, Wu X et al. 2022. Combining intramuscular and intranasal homologous prime-boost with a chimpanzee adenovirus-based covid-19 vaccine elicits potent humoral and cellular immune responses in mice. Emerg Microbes Infect. 11(1):1890-1899.
    141. Lara-Puente JH, Carreno JM, Sun W, Suarez-Martinez A, Ramirez-Martinez L, Quezada-Monroy F, Paz-De la Rosa G, Vigueras-Moreno R, Singh G, Rojas-Martinez O et al. 2021. Safety and immunogenicity of a newcastle disease virus vector-based sars-cov-2 vaccine candidate, avx/covid-12-hexapro (patria), in pigs. mBio. 12(5):e0190821.
    142. Scaggs Huang F, Bernstein DI, Slobod KS, Portner A, Takimoto T, Russell CJ, Meagher M, Jones BG, Sealy RE, Coleclough C et al. 2021. Safety and immunogenicity of an intranasal sendai virus-based vaccine for human parainfluenza virus type i and respiratory syncytial virus (sevrsv) in adults. Hum Vaccin Immunother. 17(2):554-559.
    143. Zhu F, Zhuang C, Chu K, Zhang L, Zhao H, Huang S, Su Y, Lin H, Yang C, Jiang H et al. 2022. Safety and immunogenicity of a live-attenuated influenza virus vector-based intranasal sars-cov-2 vaccine in adults: Randomised, double-blind, placebo-controlled, phase 1 and 2 trials. Lancet Respir Med. 10(8):749-760.
    144. Stark FC, Akache B, Deschatelets L, Tran A, Stuible M, Durocher Y, McCluskie MJ, Agbayani G, Dudani R, Harrison BA et al. 2022. Intranasal immunization with a proteosome-adjuvanted sars-cov-2 spike protein-based vaccine is immunogenic and efficacious in mice and hamsters. Sci Rep. 12(1):9772.
    145. Liang Z, Li H, Qu M, Liu Y, Wang Y, Wang H, Dong Y, Chen Y, Ge X, Zhou X. 2022. Intranasal bovine beta-defensin-5 enhances antituberculosis immunity in a mouse model by a novel protein-based respiratory mucosal vaccine. Virulence. 13(1):949-962.
    146. Zhang YN, Zhang ZR, Zhang HQ, Li N, Zhang QY, Li XD, Deng CL, Deng F, Shen S, Zhu B et al. 2022. Different pathogenesis of sars-cov-2 omicron variant in wild-type laboratory mice and hamsters. Signal Transduct Target Ther. 7(1):62.
    147. Halfmann PJ, Iida S, Iwatsuki-Horimoto K, Maemura T, Kiso M, Scheaffer SM, Darling TL, Joshi A, Loeber S, Singh G et al. 2022. Sars-cov-2 omicron virus causes attenuated disease in mice and hamsters. Nature. 603(7902):687-692.
    148. Fernbach S, Hale BG. 2022. Sars-cov-2 takes the bait: Exosomes as endogenous decoys. PLoS Biol. 20(9):e3001787.
    149. Ching KL, de Vries M, Gago J, Dancel-Manning K, Sall J, Rice WJ, Barnett C, Khodadadi-Jamayran A, Tsirigos A, Liang FX et al. 2022. Ace2-containing defensosomes serve as decoys to inhibit sars-cov-2 infection. PLoS Biol. 20(9):e3001754.
    150. Liew F, Efstathiou C, Openshaw PJ. 2023. Long covid: Clues about causes. Eur Respir J.
    151. McQuaid C, Brady M, Deane R. 2021. Sars-cov-2: Is there neuroinvasion? Fluids Barriers CNS. 18(1):32.
    152. Tjan LH, Furukawa K, Nagano T, Kiriu T, Nishimura M, Arii J, Hino Y, Iwata S, Nishimura Y, Mori Y. 2021. Early differences in cytokine production by severity of coronavirus disease 2019. J Infect Dis. 223(7):1145-1149.
    153. Tripathy AS, Vishwakarma S, Trimbake D, Gurav YK, Potdar VA, Mokashi ND, Patsute SD, Kaushal H, Choudhary ML, Tilekar BN et al. 2021. Pro-inflammatory cxcl-10, tnf-alpha, il-1beta, and il-6: Biomarkers of sars-cov-2 infection. Arch Virol. 166(12):3301-3310.
    154. Schultheiss C, Willscher E, Paschold L, Gottschick C, Klee B, Henkes SS, Bosurgi L, Dutzmann J, Sedding D, Frese T et al. 2022. The il-1beta, il-6, and tnf cytokine triad is associated with post-acute sequelae of covid-19. Cell Rep Med. 3(6):100663.

    QR CODE