研究生: |
吳偉祥 Wu, Wei-Hsiang |
---|---|
論文名稱: |
降低致癌蛋白MCT-1 表現抑制A549 肺腺癌細胞的上皮-間質轉型 The Reduction of MCT-1 Oncoprotein Suppresses Epithelial-Mesenchymal Transition in Invasive A549 Lung Cancer Cells |
指導教授: |
陳令儀
Chen, Lin-yi 徐欣伶 Hsu, in-Ling |
口試委員: |
王慧菁
Wang, i-Ching 陳振陽 Chen, Jen-Yang 林素芳 Lin, Su-Fang 徐欣伶 Hsu, Hsin-Ling 陳令儀 Chen, Lin-yi |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 48 |
中文關鍵詞: | 致癌蛋白 MCT-1 、上皮-間質轉型 、鈣黏蛋白-E 、轉錄因子 ZEB1 、細胞侵襲性 、細胞遷移性 |
外文關鍵詞: | MCT-1, Epithelial-Mesenchymal Transition, E-cadherin, ZEB1, cell invasion, cell migration |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
致癌蛋白MCT-1 (multiple copies in T-cell malignancy 1) 首先被發現於淋巴癌細胞株,MCT-1基因位於染色體Xq22-24位置,其蛋白由181個胺基酸組成,分子量為20 kDa。MCT-1參與細胞增生、細胞存活和調控蛋白質轉譯功能。近期文獻指出,MCT-1蛋白提升細胞遷移能力並且誘導許多腫瘤轉移及侵襲因子之生成,這暗示著MCT-1蛋白可能參與上皮-間質轉型(Epithelial-Mesenchymal Transition)過程,因此本論文研究目的在探討MCT-1蛋白在EMT中扮演的角色。我們發現在非小細胞肺癌細胞株(A549)降低MCT-1蛋白表現,顯著增加E-cadherin表現量,同時降低vimentin含量。此外,降低MCT-1表現導致ZEB1 (E-cadherin基因轉錄抑制因子)表現量下降,進而增加E-cadherin mRNA表達。再者,降低MCT-1表現可能經由降低EGFR表現去抑制生長因子誘導之EMT。利用傷口癒合、細胞穿透和細胞侵襲能力試驗等證實抑制MCT-1表現之細胞,確實可以明顯抑制細胞遷移能力及侵襲能力。基於上述結果明確顯示:致癌蛋白MCT-1可能發展成為抗腫瘤轉移之標靶,未來我將繼續深入探討其作用機轉及重要相關路徑。
The oncoprotein MCT-1 (multiple copies in T-cell malignancy) was identified in a human lymphoma cell line and mapped to chromosome Xq22-24. MCT-1 gene encodes 181 amino acids with molecular mass of 20 kDa. MCT-1 plays an important role in regulating of cell proliferation, cell survival and protein translation. Base on recent studies, oncogenic MCT-1 promotes cell migration and tumorigenic ability, as well as induces a constellation of invasive and metastatic factors. I speculate that MCT-1 is involved in tumor metastatic function. Multiple lines of evidence show that MCT-1 is implicated in the epithelial-mesenchymal transition (EMT) process. The data here demonstrate the up-regulation of E-cadherin and the down-regulation of vimentin proteins in A549 cell are closely associated with MCT-1 silencing. Knockdown of MCT-1 suppresses ZEB1 expression, but enhances E-cadherin gene expression. Moreover, loss of MCT-1 suppresses EMT phenotypes through EGFR signaling pathway. By using wound healing, trans-well and invasion assays, MCT-1 knockdown decreased cell migration and invasion. The mechanism and the potential anti-metastaticity by targeting MCT-1 will be further investigated.
Batlle, E., Sancho, E., Franci, C., Dominguez, D., Monfar, M., Baulida, J., and Garcia De Herreros, A. (2000). The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2, 84-89.
Boukerche, H., Su, Z.Z., Prevot, C., Sarkar, D., and Fisher, P.B. (2008). mda-9/Syntenin promotes metastasis in human melanoma cells by activating c-Src. Proc Natl Acad Sci U S A 105, 15914-15919.
Cavallaro, U., and Christofori, G. (2004). Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 4, 118-132.
Comijn, J., Berx, G., Vermassen, P., Verschueren, K., van Grunsven, L., Bruyneel, E., Mareel, M., Huylebroeck, D., and van Roy, F. (2001). The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7, 1267-1278.
Dierov, J., Prosniak, M., Gallia, G., and Gartenhaus, R.B. (1999). Increased G1 cyclin/cdk activity in cells overexpressing the candidate oncogene, MCT-1. J Cell Biochem 74, 544-550.
Eger, A., Aigner, K., Sonderegger, S., Dampier, B., Oehler, S., Schreiber, M., Berx, G., Cano, A., Beug, H., and Foisner, R. (2005). DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 24, 2375-2385.
Feigin, M.E., and Muthuswamy, S.K. (2009). ErbB receptors and cell polarity: new pathways and paradigms for understanding cell migration and invasion. Exp Cell Res 315, 707-716.
Fleischer, T.C., Weaver, C.M., McAfee, K.J., Jennings, J.L., and Link, A.J. (2006). Systematic identification and functional screens of uncharacterized proteins associated with eukaryotic ribosomal complexes. Genes Dev 20, 1294-1307.
Gemmill, R.M., Roche, J., Potiron, V.A., Nasarre, P., Mitas, M., Coldren, C.D., Helfrich, B.A., Garrett-Mayer, E., Bunn, P.A., and Drabkin, H.A. (2011). ZEB1-responsive genes in non-small cell lung cancer. Cancer Lett 300, 66-78.
Grant, S., Qiao, L., and Dent, P. (2002). Roles of ERBB family receptor tyrosine kinases, and downstream signaling pathways, in the control of cell growth and survival. Front Biosci 7, d376-389.
Grunert, S., Jechlinger, M., and Beug, H. (2003). Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol 4, 657-665.
Hajra, K.M., Chen, D.Y., and Fearon, E.R. (2002). The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 62, 1613-1618.
Hsu, H.L., Choy, C.O., Kasiappan, R., Shih, H.J., Sawyer, J.R., Shu, C.L., Chu, K.L., Chen, Y.R., Hsu, H.F., and Gartenhaus, R.B. (2007). MCT-1 oncogene downregulates p53 and destabilizes genome structure in the response to DNA double-strand damage. DNA Repair (Amst) 6, 1319-1332.
Hsu, H.L., Shi, B., and Gartenhaus, R.B. (2005). The MCT-1 oncogene product impairs cell cycle checkpoint control and transforms human mammary epithelial cells. Oncogene 24, 4956-4964.
Iwatsuki, M., Mimori, K., Yokobori, T., Ishi, H., Beppu, T., Nakamori, S., Baba, H., and Mori, M. (2010). Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci 101, 293-299.
Kasiappan, R., Shih, H.J., Chu, K.L., Chen, W.T., Liu, H.P., Huang, S.F., Choy, C.O., Shu, C.L., Din, R., Chu, J.S., et al. (2009). Loss of p53 and MCT-1 overexpression synergistically promote chromosome instability and tumorigenicity. Mol Cancer Res 7, 536-548.
Kasiappan, R., Shih, H.J., Wu, M.H., Choy, C., Lin, T.D., Chen, L., and Hsu, H.L. (2010). The antagonism between MCT-1 and p53 affects the tumorigenic outcomes. Mol Cancer 9, 311.
LaGamba, D., Nawshad, A., and Hay, E.D. (2005). Microarray analysis of gene expression during epithelial-mesenchymal transformation. Dev Dyn 234, 132-142.
Lee, J.M., Dedhar, S., Kalluri, R., and Thompson, E.W. (2006). The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172, 973-981.
Levenson, A.S., Thurn, K.E., Simons, L.A., Veliceasa, D., Jarrett, J., Osipo, C., Jordan, V.C., Volpert, O.V., Satcher, R.L., Jr., and Gartenhaus, R.B. (2005). MCT-1 oncogene contributes to increased in vivo tumorigenicity of MCF7 cells by promotion of angiogenesis and inhibition of apoptosis. Cancer Res 65, 10651-10656.
Mahtouk, K., Tjin, E.P., Spaargaren, M., and Pals, S.T. (2010). The HGF/MET pathway as target for the treatment of multiple myeloma and B-cell lymphomas. Biochim Biophys Acta 1806, 208-219.
Mazan-Mamczarz, K., Hagner, P., Dai, B., Corl, S., Liu, Z., and Gartenhaus, R.B. (2009). Targeted suppression of MCT-1 attenuates the malignant phenotype through a translational mechanism. Leuk Res 33, 474-482.
Mazan-Mamczarz, K., Hagner, P.R., Corl, S., Srikantan, S., Wood, W.H., Becker, K.G., Gorospe, M., Keene, J.D., Levenson, A.S., and Gartenhaus, R.B. (2008). Post-transcriptional gene regulation by HuR promotes a more tumorigenic phenotype. Oncogene 27, 6151-6163.
Nandi, S., Reinert, L.S., Hachem, A., Mazan-Mamczarz, K., Hagner, P., He, H., and Gartenhaus, R.B. (2007). Phosphorylation of MCT-1 by p44/42 MAPK is required for its stabilization in response to DNA damage. Oncogene 26, 2283-2289.
Ohira, T., Gemmill, R.M., Ferguson, K., Kusy, S., Roche, J., Brambilla, E., Zeng, C., Baron, A., Bemis, L., Erickson, P., et al. (2003). WNT7a induces E-cadherin in lung cancer cells. Proc Natl Acad Sci U S A 100, 10429-10434.
Park, J.H., and Han, H.J. (2009). Caveolin-1 plays important role in EGF-induced migration and proliferation of mouse embryonic stem cells: involvement of PI3K/Akt and ERK. Am J Physiol Cell Physiol 297, C935-944.
Peinado, H., Olmeda, D., and Cano, A. (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7, 415-428.
Prosniak, M., Dierov, J., Okami, K., Tilton, B., Jameson, B., Sawaya, B.E., and Gartenhaus, R.B. (1998). A novel candidate oncogene, MCT-1, is involved in cell cycle progression. Cancer Res 58, 4233-4237.
Reinert, L.S., Shi, B., Nandi, S., Mazan-Mamczarz, K., Vitolo, M., Bachman, K.E., He, H., and Gartenhaus, R.B. (2006). MCT-1 protein interacts with the cap complex and modulates messenger RNA translational profiles. Cancer Res 66, 8994-9001.
Saitoh, M., Shirakihara, T., and Miyazono, K. (2009). Regulation of the stability of cell surface E-cadherin by the proteasome. Biochem Biophys Res Commun 381, 560-565.
Shi, B., Hsu, H.L., Evens, A.M., Gordon, L.I., and Gartenhaus, R.B. (2003). Expression of the candidate MCT-1 oncogene in B- and T-cell lymphoid malignancies. Blood 102, 297-302.
Shih, J.Y., and Yang, P.C. (2011). The EMT regulator slug and lung carcinogenesis. Carcinogenesis 32, 1299-1304.
Shin, S., Dimitri, C.A., Yoon, S.O., Dowdle, W., and Blenis, J. (2010). ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependent signaling events. Mol Cell 38, 114-127.
Shintani, Y., Maeda, M., Chaika, N., Johnson, K.R., and Wheelock, M.J. (2008). Collagen I promotes epithelial-to-mesenchymal transition in lung cancer cells via transforming growth factor-beta signaling. Am J Respir Cell Mol Biol 38, 95-104.
Takeyama, Y., Sato, M., Horio, M., Hase, T., Yoshida, K., Yokoyama, T., Nakashima, H., Hashimoto, N., Sekido, Y., Gazdar, A.F., et al. (2010). Knockdown of ZEB1, a master epithelial-to-mesenchymal transition (EMT) gene, suppresses anchorage-independent cell growth of lung cancer cells. Cancer Lett 296, 216-224.
Thiery, J.P. (2003). Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15, 740-746.
Thiery, J.P., Acloque, H., Huang, R.Y.J., and Nieto, M.A. (2009). Epithelial-Mesenchymal Transitions in Development and Disease. Cell 139, 871-890.
Thiery, J.P., and Sleeman, J.P. (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7, 131-142.
Uttamsingh, S., Bao, X., Nguyen, K.T., Bhanot, M., Gong, J., Chan, J.L., Liu, F., Chu, T.T., and Wang, L.H. (2008). Synergistic effect between EGF and TGF-beta1 in inducing oncogenic properties of intestinal epithelial cells. Oncogene 27, 2626-2634.
van Roy, F., and Berx, G. (2008). The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci 65, 3756-3788.
Wendt, M.K., Allington, T.M., and Schiemann, W.P. (2009). Mechanisms of the epithelial-mesenchymal transition by TGF-beta. Future Oncol 5, 1145-1168.
Wendt, M.K., Smith, J.A., and Schiemann, W.P. (2010). Transforming growth factor-beta-induced epithelial-mesenchymal transition facilitates epidermal growth factor-dependent breast cancer progression. Oncogene 29, 6485-6498.
Yang, J., Mani, S.A., Donaher, J.L., Ramaswamy, S., Itzykson, R.A., Come, C., Savagner, P., Gitelman, I., Richardson, A., and Weinberg, R.A. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927-939.
Yang, J., and Weinberg, R.A. (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14, 818-829.
Yilmaz, M., and Christofori, G. (2009). EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 28, 15-33.