簡易檢索 / 詳目顯示

研究生: 孫宜廷
Sun, Yi-Ting
論文名稱: 7鋰133銫費什巴赫共振的耦合頻道計算
Coupled-Channel Calculations of 7Li-133Cs Feshbach Resonances
指導教授: 童世光
Tung, Shih-Kuang
口試委員: 劉怡維
Liu, Yi-Wei
蘇蓉容
Su, Jung-Jung
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 48
中文關鍵詞: 超冷原子混合氣體費什巴赫共振耦合頻道計算
外文關鍵詞: Ultracold atoms, Ultracold mixture, Feshbach resonance, Coupled-channel calculation
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文發表7鋰133銫費什巴赫共振的耦合頻道計算。內容如下:一,巴赫共振的原理與超冷原子碰撞的複習。二,我們實驗的陳述。實驗中在 1000 G 以下觀測到六個 s- 波共振以及四個 p- 波共振,並使用有限溫度模型從原子損失量的數據取出共振位置。三,使用 MOLSCAT 和 BOUND 執行 7 鋰 133 銫費什巴赫共振的耦合頻道計算,算出散射長度、散射矩陣、以及束縛能量。鋰銫的位能可修正並符合實驗中觀測到的共振位置。從修正完畢的鋰銫位能計算,單態與三重態的散測長度為 a1 = 45.82(2)a0 與 a3 = 873.8(70) a0 。最後,鋰銫費什巴赫分子的散射長度與束縛能量由 MOLSCAT 和 BOUND 得著。
    做出鋰銫完善的特徵調查,對未來使用7鋰133銫的研究是重要的。在近於磁性費什巴赫共振的區域,僅調磁場就可以鋰銫的交互作用強度調變數個數量級。費什巴赫共振的存在給予我們許多研究的可能性,如少體物理中的費什巴赫分子與葉菲莫夫三聚體,以及多體物理中的極子和單元量子氣體。


    This thesis presents coupled-channel calculations of 7 Li-133 Cs Feshbach resonances. First, the principles behind Feshbach resonances and ultracold atomic collisions are reviewed. Then, the details of our experiment are elaborated. In this work, we observe six s-wave and four p-wave resonances under 1000 G, and the resonance positions are extracted from the loss profile with finite-temperature model fits. After that, coupled-channel calculations are carried out, using MOLSCAT and BOUND. In the calculations, the LiCs potentials are tweaked to fit the observed resonance positions. From the refined Li-Cs potentials, the singlet and triplet scattering lengths are calculated to be a1 = 45.82(2) a0 and a3 = 873.8(70) a0 . Finally, using MOLSCAT and BOUND, we also obtain the scattering lengths and binding
    energies of the Li-Cs Feshbach molecules.
    The full characterization of Li-Cs interaction is crucial to future research using 7Li-133Cs mixtures. Near the magnetic Feshbach resonances, it is possible to tune the Li-Cs interaction strength over several orders of magnitude, simply by varying an external magnetic field. The presence of Feshbach resonances in Li-Cs mixtures opens up exciting opportunities to explore few-body physics, such as Feshbach molecules and Efimov trimers, and many-body phenomena, such as polarons and unitary quantum gases.

    1. Feshbach Resonance 5 1.1 Scattering of Two Particles 5 1.2 Hyperfine Interaction 8 1.3 Two-Channel Scattering Model 13 2 Experiment 16 2.1 Magneto-Optical Traps of Li and Cs 17 2.2 Optical Dipole Trap 17 2.3 Evaporation and Spin Preparation 18 2.4 Magnetic Feshbach Spectroscopy 21 2.5 Magnetic Field Error 21 3 Coupled-Channel Calculation 23 3.1 MOLSCAT 23 3.2 BOUND 25 3.3 Potential Shift 26 3.4 Computational Time-Cost 28 3.5 Thermal Averaging 29 3.6 Finite-Temperature Model Fit 34 4 Related Collisional Properties 38 3.7 Inelastic Two-body Loss 38 3.8 Resonance Strength 40 3.9 Singlet and Triplet Scattering Lengths 41 5 Conclusion 44 References 46

    [1] L. D. Landau and E. M. Lifshitz, translated by J. B. Sykes and J. S. Bell, ”Course of Theoretical Physics Volume 3: Quantum Mechanics, Non-relativistic Theory, § 34”, Pergamon Press, Second revised edition (1965).
    [2] Cheng Chin, ”A simple model of Feshbach molecules”, arXiv:cond-mat/0506313v2 (2005).
    [3] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, ”Feshbach resonances in ultracold gases”, Reviews of Modern Physics 82, 1225 (2010).
    [4] M. Repp, R. Pires, J. Ulmanis, R. Heck, E. D. Kuhnle, M. Weidemüller, E. Tiemann, ”Observation of interspecies 6Li-133Cs Feshbach resonances”, Physical Review A 87, 010701(R),
    (2013).
    [5] S.-K. Tung, C. Parker, J. Johansen, C. Chin, Y. Wang, and P. S. Julienne, ”Ultracold mixtures of atomic 6Li and 133Cs with tunable interactions”, Physical Review A, 87, 010702(R), (2013).
    [6] Pascal Naidon, ”Magnetic Feshbach resonances in 7Li
    133Cs mixtures”, arXiv 2001.05329 (2020).
    [7] W.-X. Li, Y.-D. Chen, Y.-T. Sun, S. Tung, and P. S. Julienne, ”Feshbach resonances in an ultracold 7Li-133Cs Bose-Bose mixture”, arXiv 2205.08837 (2022).
    [8] U. Schlöder, H. Engler, U. Schünemann, R. Grimm, and M. Weidemüller, ”Cold inelastic collisions between lithium and cesium in a two-species magneto-optical trap”, The European Physics Journal D, 7, 331 (1999).
    [9] R. Grimm, M. Weidemuller, Y. B. Ovchinnikov, ”Optical Dipole Traps for Neutral Atoms”, Advances in Atomic Molecular and Optical Physics 42, 2000, 95-170 (1999).
    [10] Y.-D. Chen, W.-X. Li, M.-E. Chou, C.-H, Kuo, C.-S. Li, and S. Tung, ”Lithium-cesium slow beam from a two-dimensional magneto-optical trap”, Physical Review A 103, 023102 (2021).
    [11] N. Gross and L. Khaykovich, ”All-optical production of 7Li Bose-Einstein condensation using Feshbach resonances”, Physical Review A 77, 023604 (2008).
    [12] T. Ikemachi, A. Ito, Y. Aratake, Y. Chen, M. Koashi, M. Kuwata-Gonokami, and M. Horikoshi, ”All-optical production of dual Bose–Einstein condensates of paired fermions and bosons with 6Li and 7Li”, Journal of Physics B: Atomic, Molecular and Optical Physics, 50
    01LT01 (2017).
    [13] N. Gross, Z. Shotan, O. Machtey, S. Kokkelmans, and L. Khaykovich, ”Study of Efimov physics in two nuclear-spin sublevels of 7Li”, Comptes Rendus Physique 12, 4 (2011).
    [14] R. G. Hulet, J. H. V. Nguyen, and R. Senaratne, ”Methods for Preparing Quantum Gases of Lithium”, Review of Scientific Instruments 91, 011101 (2020).
    [15] Jeremy M. Hutson and C. Ruth Le Sueur, ”MOLSCAT: a program for non-reactive quantum scattering calculation on atomic and molecular collisions”, Version 2020.0, https://github.com/molscat/molscat.
    [16] Jeremy M. Hutson and C. Ruth Le Sueur, ”MOLSCAT: a program for non-reactive quantum scattering calculations on atomic and molecular collisions”, Computer Physics Communications 241, 9-18 (2019).
    [17] E. Arimondo, M. Inguscio, P. Violino, ”Experimental determinations of the hyperfine structure in the alkali atoms”, Reviews of Modern Physics 49, 31 (1977).
    [18] B. R. Johnson, ”The multichannel log-derivative method for scattering calculations”, Journal of Computational Physics 13, 445-449 (1973).
    [19] David E. Manolopoulos, ”An improved log derivative method for inelastic scattering”, Journal of Chemical Physics 85, 6425 (1986).
    [20] Millard H. Alexander and David E. Manolopoulos, ”A stable linear reference potential algorithm for solution of the quantum close-coupled equations in molecular scattering theory”, Journal of Chemical Physics 86, 2044 (1987).
    [21] Jeremy M. Hutson and C. Ruth Le Sueur, ”BOUND: a program for bound states of interacting pairs of atoms and molecules”, Version 2020.0, https://github.com/molscat/molscat.
    [22] Jeremy M. Hutson and C. Ruth Le Sueur, ”BOUND and FIELD: programs for calculating bound states of interacting pairs of atoms and molecules”, Computer Physics Communications 241, 1-8 (2019).
    [23] P. Staanum, A. Pashov, H. Knockel, E. Tiemann, ”X1Σ+ and a3Σ+ states of LiCs studied by Fourier-transform spectroscopy”, Physical Review A 75, 042513 (2007).
    [24] Paul S. Julienne and Jeremy M. Hutson, ”Contrasting the wide Feshbach resonces in 6Li and 7Li”, Physical Review A 89, 052715 (2014).
    [25] C. Ticknor, C. A. Regal, D. S. Jin, and J. L. Bohn, ”Multiplet structure of Feshbach resonances in nonzero partial waves”, Physical Review A 69, 042712 (2004).
    [26] Eugene P. Wigner, ”On the Behavior of Cross Sections Near Thresholds”, Physical Review, 73, 9 (1948).
    [27] T. L. Nicholson, S. Blatt, B. J. Bloom, J. R. Williams, J. W. Thomsen, and J. Ye, ”Optical Feshbach resonances: Field-dressed theory and comparison with experiments”, Physical Review A 92, 022709 (2015).

    QR CODE