簡易檢索 / 詳目顯示

研究生: 馬飛和
Freida Consuelo Palma
論文名稱: 利用平均移動法及特徵人形模組之行人偵測與追蹤
Pedestrian Detection And Tracking Using Mean Shift Algorithm And A Human Eigen Shape Model
指導教授: 賴尚宏
Shang-Hong Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 48
中文關鍵詞: 平均移動特徵人形模組
外文關鍵詞: mean shift, eigen-shape model
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用廣為人用的PCA統計模型建構出的特徵人形模組,結合平均移動追蹤法發展出一套新的追蹤人形的方法。一般的平均移動追蹤注重在藉由利用矩形形狀的追蹤。我們的新方法注重在利用更精確的人形預測去貫穿整部影片地追蹤人形。這整篇論文著重在找出人形的位置,辨別前景物體是否為人形,用改進過的平均移動法來追蹤辨認出的人形物體。最後是改進過的平均移動追蹤法中的人形主成分係數的更新方法,用以當人形形狀改變時更新它。


    A new approach to human tracking was developed through the use of a popular statistical model, known as Principal Component Analysis, for constructing the human eigen-shape model in conjunction with the mean shift tracking algorithm. The regular mean shift tracker focuses on tracking through the use of the rectangle shape. The new approach focuses on using a more precise estimation of a human shape to track the human throughout a video sequence. The entire paper focuses on the localization of human; identification of the human; tracking the identified human by the modified mean shift algorithm. Last but not least, is the updating of the human principal component coefficients in the modified mean shift tracker, so as to update the human shape as it changes.

    Figure List III Table List V 1 Introduction 1 1.1 Motivation 1 1.2 Problem 1 1.3 System Overview 2 1.3.1 Training Model 2 1.3.2 Identification 2 1.3.3 Mean Shift Tracking 3 1.3.4 Coefficient Updating 3 1.4 Main Contribution 4 1.5 Thesis Organization 4 2 Previous Work 5 3 The Proposed Human Detection and Tracking Algorithm 8 3.1 Statistical Human Shape Model 8 3.1.1 Data Set Collection 8 3.1.2 PDM Construction 9 3.2 Identification 16 3.3 Mean Shift Algorithm 19 3.3.1 Improved Mean Shift Algorithm Human Tracking 24 3.4 Coefficient Updating 25 4 Experimental Results 30 I 4.1 Experimental Setup Information 30 4.2 Results and Discussion 30 5 Conclusion 43 5.1 Summary 43 5.2 Future Work 45 6 Reference 46

    [1] Forsyth, D.A, and Ponce, J. (2002). Computer vision: a modern approach. Prentice Hall.
    [2] Stauffer, C., and Grimson, W.E.L. (1999). Adaptive background mixture models for real- time tracking. Computer Vision and Pattern Recognition, Volume 2, 23-25.
    [3] Comaniciu, D., Ramesh, V., and Meer, P.(2000). Real-time tracking of non-rigid objects using mean shift. Computer Vision and Pattern Recognition, Volume 2, 13-15.
    [4] Jongwoo, L., and David, K. (2004). Tracking humans using prior and
    learned representations of shape and appearance. IEEE International
    Conference on Automatic Face and Gesture Recognition.
    [5] Fatih, P., and Oncel, T. (2003). Human body tracking by adaptive
    Background models and mean-shift analysis .MERL.
    [6] Jing-Ping, J., Yan-Ning, Z., Rong-Chun, Z., and Ze-Tao, J.(2005). Tracking
    of Objects in image sequences using multi-freeness mean shift algorithm.
    IEEE.
    [7] Comaniciu, D., and Meer, P. (1999). Mean shift analysis and applications. IEEE, 1197-1203.
    46
    [8] Jia, J.P., and Zhao, R.C.(2004). Tracking of objects in images sequences using bandwidth matrix mean shift algorithm. International Conference on Signal Processing, VOL.2, 918-921.
    [9] Jepson, A.D., Fleet, D. J., and El-Maraghi, T.F. (2001). Robust on-line appearance models for visual tracking. IEEE Conference on Computer Vision andPattern Recognition, Volume I, 415–422.
    [10] Zhou, J., and Hoang, J. (2005). Real time robust human detection
    and tracking system. IEEE Conference on Computer Vision and Pattern
    Recognition.
    [11] Cuce, I. H., and Cetin, E.A.(2004). Mean shift tracking of moving
    objects using multi-dimensional histograms. Signal and Data
    Processing of Small Targets.
    [12] Comaniciu, D., Ramesh, V., and Meer, P. (2000). Kernel- based object tracking. Real-Time Vision and Modeling Department.
    [13] Ukrainitz, Y. and Sarel, B. Mean Shift Theory and Applications. Retrieved February 3, 2007, from http://www.wisdom.weizmann.ac.il/~ deniss/vision_ spring04/files/mean_shift/mean_shift.ppt.
    [14] Hariharan, R. (2005). Eigen values eigen vectors and principal component. Retrieved February 3, 2007, from http://drona.csa.iisc.ernet.in/~ramesh/ courses.html.
    47
    [15] Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition. Retrieved January 10, 2007, from http://en.wikipedia.org/wiki/Karhunen-Lo%C3%A8ve_transform
    [16] Ying, W., and Ting, W. (2006). A field model for human detection and
    tracking. IEEE, Vol.28, 753-764.
    [17] Blake, A. and Isard, M.(2001). Active Contours. International Conference on Image Analysis and Processing, 354.
    [18] Blake, A. and Isard, M.( 1996). Contour Tracking by Stochastic Propagation of Conditional Density. Proc. European Conf. Computer Vision, 343-356.
    [19] Lipton, J.A., Fujiyoshi, H. and Patil, S.R.,(1998).Moving Target
    Classification and Tracking from Real Time Video. IEEE.
    [20] Epanechinikov Kernel. Retrieved March 16, 2007, from
    http://en.wikipedia. org/wiki/Kernel_(statistics).
    [21] Video grabber Software. Retrieved November 12, 2006, from
    http://www. mitov.com/
    [22] Borland Builder C++. Retrieved February 12, 2007, from
    http:// info.borland. com/techpubs/borlandcpp/

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE