簡易檢索 / 詳目顯示

研究生: 馬維駿
Ma, Wei-Chun
論文名稱: 利用溫感型胺基酸嵌段共聚物水膠自組裝不 同孔洞大小微結構與其自組裝行為探討
Self-Assembly of Mesostructures with Hierarchical Porosity through Thermosensitive Polypeptide-Containing Block Copolymer Hydrogels
指導教授: 朱一民
Chu, I-Ming
口試委員: 陳信龍
Chen, Hsin-Lung
蔡協志
Tsai, Hsieh-Chih
黃駿
Huang, Chun
姚少凌
Yao, Chao-Ling
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 英文
論文頁數: 109
中文關鍵詞: 溫感型嵌段共聚物水膠自組裝旋節線分解
外文關鍵詞: Thermosensitive, Block-copolymer, Hydrogel, Self-assembly, Spinodal-decomposition
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 某些兩親聚合物可以自組裝形成各種結構,例如水性介質中的膠束和水凝膠,具體取決於濃度或溫度。這些不同的結構在生物醫學和材料加工領域中發現了許多應用。開發了一種簡單的方法,該方法通過單組分含多肽的嵌段共聚物的自組裝來產生各種中孔結構。我們的初步結果表明,通過使用水性溶劑作為溶劑,系統比較不同鍊長的自組裝甲氧基聚(乙二醇)-嵌段-聚(L-丙氨酸)(mPEG-PA)。使用mPEG-NH2作為引髮劑,在L-丙氨酸的N-羧基酐開環聚合後,使用1H NMR和GPC確認其明確的化學結構。特定類型的聚丙氨酸(PA)二級結構可能會干擾mPEG結晶,這是由於相分離(類似於DSC結果表明丙氨酸嵌段的二級結構)所致。使用TGA系統研究了mPEG-PA系統在不同鍊長下的熱穩定性。膠凝機理是研究的重點。使用相似的方法,使用選擇性溶劑進行mPEG-PA系統的自組裝可以完全理解稀溶液中膠束行為的策略。通過使用具有不同極性的溶劑進行鑄造,只需簡單地調整鍊長,即可獲得通過SEM成像觀察到的各種溶液流延形貌,包括圓柱體和膠束聚集體。溶膠到凝膠的轉變機理可以通過富聚合物相和富水相之間的相分離來最好地解釋。可能是旋節線分解過程引起相分離。此外,由於相分離機理和不同的鍊長,可以通過SEM圖像觀察到分支和分支結構。該結果為mPEG-PA系統的行為提供了新的見解,從而使對各種應用程序的控制更加受控。


    Certain amphiphilic polymers can self-assemble to form various structures, such as micelles and hydrogels in aqueous medium, depending on the concentration or temperature. These different structures have found many applications in biomedical and material processing fields. A simple method to create a variety of mesoporous structures via the self-assembly of a single composition polypeptide-containing block copolymer is developed. Our preliminary results demonstrate that, by using aqueous solvent as a solvent for systematic comparison of self-assembly methoxy poly(ethylene glycol)-block-poly(L-alanine) (mPEG-PA) in different chain lengths. Using 1H NMR and GPC to confirm their well-defined chemical structures after the ring-opening polymerization of N-carboxy anhydrides of L-alanine using mPEG-NH2 as the initiator. The specific type of polyalanine (PA) secondary structures can interfere to mPEG crystallization due to the phase-separation like secondary structure of the alanine blocks by DSC results. The thermal stabilities of mPEG-PA system in different chain lengths are systematically studied using TGA. Gelation mechanism was especially focused in the study. With similar methodology, using selective solvents for the self-assembly of mPEG-PA system can completely understand the strategy of micelles behavior in the dilute solution. Various solution-cast morphologies observed by SEM imaging including cylinders and micelles aggregates can be obtained by using solvents with different polarity for casting with simply tuning the chain lengths. The sol-to-gel transition mechanism can be best explained by phase separation between polymer-rich and water-rich phases. It might be spinodal decomposition process to cause the phase separation. Furthermore, the branch and flack structures can be observed due to phase separation mechanism and different chain lengths by SEM images. This result offers new insights into behavior of mPEG-PA system, enabling more controlled manipulation to various applications.

    摘要 I Abstract III Contents V List of Tables VII List of Figures VIII Chapter 1 Introduction 1 1.1 Molecular Fabrication: Top-down and Bottom-up Approaches 1 1.2 Self-Assembly 3 1.2.1 Block Copolymer (BCP) Self-Assembly 6 1.2.2 Micelles Property of Block Copolymer Assembly 8 1.3 Polypeptide-Based Block Copolymer 11 1.3.1 Secondary Structures 13 1.3.1.1α-helix 13 1.3.1.2β-sheet 14 1.3.1.3 Polypeptide-Based Copolymer 14 1.4 Stimuli-Responsive Block Copolymer 16 1.4.1 Thermo-Responsive Block Copolymer Gels 18 1.5 Solvent Selectivity Induced Phase Transition 30 1.6 Spinodal Decomposition 34 Chapter 2 Objectives 36 Chapter 3 Experimental 39 3.1 Materials 39 3.2 Sample Characterization 43 3.3 Preparation of mPEG-PA Samples 44 3.3.1 Preparation of mPEG-PA Samples for Sol–Gel Transition 44 3.3.2 Sample Preparation for Micelles Characterization 44 3.3.3 Sample Preparation for Hydrogel Morphology. 45 3.3.4 Sample Preparation for Secondary Structure Change of Block Copolymer Hydrogel 45 3.3.5 Solution-cast Morphology of mPEG-PA 46 Chapter 4 Research Results 47 4.1 Synthesis and Characterization of mPEG-PA Block Copolymer Hydrogels 47 4.1.1 Thermal Properties of mPEG-PA Block Copolymer Hydrogels 52 4.2 Hydrogel Properties and Phase Transition Mechanism 55 4.2.1 Investigations of Block Copolymer Secondary Structures 59 4.2.2 Surface Morphology of mPEG-PA Block Copolymer 64 4.3 Characterization of Micelles Behavior in mPEG-PA System 67 4.3.1 Critical Micelles Concentration 67 4.3.2 Size Distribution of mPEG-PA Micelles 70 4.3.3 Morphology of Various Solvent-Cast mPEG-PA Micelles 73 4.4 Hydrogels Gelation Mechanism 78 Chapter 5 Discussion 83 Chapter 6 Conclusions 91 Chapter 7 References 94 Appendix 96 List of Tables Table 4-1. Block Copolymer Characterization 50 Table 4-2. The chemical structure of the amide I band of the mPEG-PA block copolymer. 63 Table 4-3. Solubility parameters of solvents and polymers. 77 Table A-1. The chemical structure of the amide I band of the mPEG45-PA35 block copolymer as a function of temperature 97 Table A-2. The chemical structure of the amide I band of the mPEG45-PA35 block copolymer as a function of mass fraction (concentration) 102 List of Figures Figure 1-1. Example of static self-assembly. (a) Crystal structure of a ribosome. (b) Self-assembled peptideamphiphile nanofibers. (c) An array of millimeter sized polymeric plates assembled at a water/ perfluorodecalin interface by capillary interactions. (d) Thin film of a nematic liquid crystal on an isotropic substrate. (e) Micro meter sized metallic polyhedral folded from planar substrates. (f) A three-dimensional aggregate of micrometer plates assembled by capillary forces. 4 Figure 1-2. Example of dynamic self-assembly. (a)An optical micrograph of a cell with fluorescently labeled cytoskeleton and nucleus; (microtubules ~ 24nm in diameter) are colored red (b) Reaction-diffusion waves in a Belousov-Zabatinski reaction in a 3.5-inchptri dish (c) A simple aggregate of three millimeter-sized, rotating, magnetized disks interacting with one another viavortex-vortex interactions. (d) A school of fish. (e) Concentric rings formed by charged metallic beads 1mm in diameter rolling in circular paths on a dielectric support. (f) Convection cells formed above a micropatterned metallic support. The distance between the centers of the cells is~2mm. 5 Figure 1-3. Biological architectures are formed by interplay among secondary forces to form different levels of organization, i.e., different length-scales of morphologies. 6 Figure 1-4. Schematic phase diagrams showing the various “classical” BCP morphologies adopted by non-crystalline linear diblock copolymer. The blue component represents the minority phase and the matrix phase surrounds it. 7 Figure 1-5. Various self-assembled structures formed by amphiphilic block copolymers in a block-selective solvent. The packing parameter P=V/a0lc, where V is the solventphobic chain volume, a0 is the optimal area of the head group, and lc is the length of the hydrophobic tail. 8 Figure 1-6. Alternatives to obtain crosslinked hydrogels. Hydrogels can be based on permanent, covalent links between polymer chains or physical (reversible) crosslink bonds based on a variety of non-covalent interactions (from synthetic and biological origin); (Right): Examples of TE scaffolds, including hydrogels, fibrous, custom and porous morphologies. 11 Figure 1-7. Schematic diagram of secondary structures commonly adopted by polypeptides: a) random coil, b) α-helix, and c) anti-parallel β-sheet. 13 Figure 1-8. (A) Photographs of the sol−gel transition with increase of temperature and the gel disintegration by incubating with H2O2 (10mol, 0.5 h). (B) FTIR spectra of P2 before and after oxidation by H2O2 (10mol). (C) In vitro mass loss profiles for the in situ formed hydrogels of P4 (16%) incubated in PBS without H2O2 as control, respectively. 16 Figure 1-9. Potential stimuli and responses of synthetic polymers. 17 Figure 1-10. Stimuli-responsive nanostructures based on polymers, colloids and surface. 18 Figure 1-11. Synthesis scheme of PSI 19 Figure 1-12. Effect of temperature on light transmittance of 1% (w/v) PBS with different pH of polymer B–F on the heating process. 20 Figure 1-13. Sol–gel–sol phase diagrams of mPEG–PLGA and Cytotoxicity test (MTT assay) of different composite gels at various concentrations. 21 Figure 1-14. Characterization of mPEG-PLCPHA thermosensitive hydrogels. (A) The mPEG-PLCPHA sol-gel-sol transition diagram (with and without cefazolin loading). (B) The storage modulus of the hydrogel. (C) The loss modulus of the hydrogel. (D) The live and dead assay. 23 Figure 1-15. Characterization of polymer 1 and polymer 2. 24 Figure 1-16. A) The average size of Lys-Ala-PLX-Ala-Lys aggregates. (B) The zeta potential of Lys-Ala-PLX-Ala-Lys. (A) MC3T3-E1 cell viability after culturing with media containing diffused copolymers on respective days. (C) 3D confocal images of cell-laden hydrogels on days 1 and 3 (live cells: green, dead cells: red). (D) Viability of cells encapsulated in hydrogels in comparison with 2D culture. 26 Figure 1-17. SEM micrograph of hydrogels prepared from 5% (wt.% in DI water) of (a) PF, (b) PF-A2, (c) PF-A4, (d) PF-A8, (e) PF-A16, and (f) PF-Phe. (g) Viability of chondrocytes encapsulatedwithin 20% of PF127 and 5% of PF-A2, PF-A4, PF-A8, PF-A16, and PF-Phe hydrogels (MTT, absorbance read at 570 nm). (h) Appearance of hydrogels two weeks after subcutaneous injection of 20% of PF127 and 5% of PF-A16 and PF-Phe. (i) PF-A16 hydrogel removed 2 weeks after injection. (j) Top: frozen section of the PF-A16 hydrogel on week 2. Bottom: frozen section of the PF127 hydrogel on week 2. 28 Figure 1-18. Schematic illustrations of the supramolecular hydrogel. 29 Figure 1-19. Phase diagram for SI(11-21) as a function of temperature (T) and polymer volume fraction (ϕ) for solutions in DOP, DBP, DEP, and C14. Filled and open circles identify ODTs and OOTs, respectively. The dilute solution critical micelle temperature (cmt) is indicated by a filled square. 32 Figure 1-20. TEM micrographs and corresponding SAXS profile of P2VP-b-PI(26/74) diblock copolymer films prepared by solvent casting from (a) n-BtCl, (b) CCl4, (c) toluene, (d) benzene (e) THF, (f) CH2Cl2 and (g) 1,4-dioxane solutions. 33 Figure 1-21. A phase diagram with a miscibility gap. The phase diagram depicts temperature versus the molar fraction of a component, e.g. XB. Curve 1: phase boundary, curve 2: spinodal boundary, +: metastable region, where nucleation/growth phase separation occurs, -: unstable region, where spinodal decomposition phase separation occurs. 35 Figure 3-1. Synthesis scheme of amino-terminated mPEG and subsequent alanine-NCA ring opening polymerization by reacting with mPEG-NH2 to provide mPEGm-b-poly(alanine)n. 41 Figure 3-2. Main synthesis glass reactor for synthesis under high anhydrous nitrogen conditions. 42 Figure 4-1. 1H NMR spectrum with the corresponding protion labeled of mPEG45-PA35 48 Figure 4-2. 1H NMR spectrum with the corresponding protion labeled of mPEG113-PA35. 49 Figure 4-3. 1H NMR spectrum with the corresponding protion labeled of mPEG113-PA21. 49 Figure 4-4. FTIR spectra of mPEG-PA block copolymers with different chain length. (a) mPEG45-PA35, (b) mPEG113-PA35, (c) mPEG113-PA21 51 Figure 4-5. TGA graphs for mPEG-NH2 homopolymer and three different chain length mPEG-PA copolymers 53 Figure 4-6. The thermograms of mPEG-PA copolymers determined by DSC. 54 Figure 4-7. A sol-to-gel diagram of mPEG-PA hydrogel solution examined by the test-tube inverting method. Black dot line is reveal the samples would be free-standing gel state at 4 oC condition. 56 Figure 4-8. Photographs of the sol−gel transition with increase of temperature. 57 Figure 4-9. The change in the rheology property of mPEG- PA copolymer solution (6.0 wt%) with the temperature increase. 58 Figure 4-10. FTIR spectra of mPEG-PA aqueous solution (6 wt%, 7 wt% and 8 wt%) at 10 oC, 30 oC and 50 oC as a function of mPEG and polyalanine length. 61 Figure 4-11. Second derivative infrared spectrum of the amide I band of the mPEG-PA block copolymer. 63 Figure 4-12. SEM interior structure images of 6 wt% (a) mPEG45-PA35, (c) mPEG113-PA35 and (e) mPEG113-PA21. Different magnifications of the (b) mPEG45-PA35, (d) mPEG113-PA35 and (f) mPEG113-PA21. 65 Figure 4-13. SEM micrograph of mPEG-PA with long-range well-defined continuous networks. 66 Figure 4-14. Spectrum of fluorescence intensity ratio with 360 nm depend on the concentration of mPEG45-PA35 block copolymer. 68 Figure 4-15. Spectrum of fluorescence intensity ratio with 360 nm depend on the concentration of mPEG113-PA35 block copolymer. 69 Figure 4-16. Self-assembled nanoobjects hydrodynamic radius of the mPEG45-PA35 block copolymer in diwater dispersion at 25 oC. 71 Figure 4-17. Self-assembled nanoobjects hydrodynamic radius of the mPEG113-PA35 block copolymer in diwater dispersion at 25 oC. 72 Figure 4-18. FESEM micrograph of mPEG-PA block copolymer casting from (a) di-water, (b) 2-propanol, (c) ethanol, (d) cyclohexane and (e) toluene at 0.07 wt% with different chain length 76 Figure 4-19. SEM micrograph of 6 wt% (a) mPEG45-PA35, (b) mPEG113-PA35 and (c) mPEG113-PA21. The block copolymer hydrogel without thermal treatment (a1, b1, c1). Heating the hydrogel just above the critical gelation temperature (CGT) and react only three minutes (a2, b2, c2). Heating the hydrogel above the critical gelation temperature (CGT) and heating four hours (a3, b3, c3). 80 Figure 4-20. SEM micrograph of (a) mPEG45-PA35, (b) mPEG113-PA35 and (c) mPEG113-PA21 copolymer internal structure. The block copolymer hydrogel without thermal treatment (a1, b1, c1). Heating the hydrogel just above the critical gelation temperature (CGT) and react only three minutes (a2, b2, c2). Heating the hydrogel above the critical gelation temperature (CGT) and react four hours (a3, b3, c3). 82 Figure A-1. FTIR spectra of mPEG45-PA35 aqueous solution (4 wt%, 6 wt% and 8 wt%) as a function of temperature. 97 Figure A-2. Second derivative infrared spectrum of the amide I band of the mPEG45-PA35 block copolymer as a function of temperature. 98 Figure A-3. FTIR spectra of mPEG113-PA35 aqueous solution (6 wt%, 7 wt% and 8 wt%) as a function of temperature. 99 Figure A-4. FTIR spectra of mPEG113-PA21 aqueous solution (6 wt%, 7 wt% and 8 wt%) as a function of temperature. 100 Figure A-5. FTIR spectra of mPEG45-PA35 aqueous solution (10 oC, 30 oC and 50 oC) as a function of mass fraction (concentration). 102 Figure A-6. Second derivative infrared spectrum of the amide I band of the mPEG45-PA35 block copolymer as a function of mass fraction (concentration). 103 Figure A-7. FTIR spectra of mPEG113-PA35 aqueous solution (10 oC, 30 oC and 50 oC) as a function of mass fraction (concentration). 104 Figure A-8. FTIR spectra of mPEG113-PA21 aqueous solution (10 oC, 30 oC and 50 oC) as a function of mass fraction (concentration). 105

    1. Cao, G. Nanostructures & Nanomaterials: Synthesis, Properties & Applications, Imperial College Press, London, 2004.
    2. Das, B.; Subramanium, S.; Melloch, M. R. Semicond. Sci. Technol. 1993, 8, 1347.
    3. Park, C.; Yoon, J.; Thomas, E. L. Polymer 2003, 44, 6725.
    4. Kricheldorf, H. R. Angew. Chem. Int. Ed. 2006, 45, 5752.
    5. Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
    6. Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K. E.; Whitesides, G.M. J. Am. Chem. Soc. 2001,1234, 7677.
    7. Jakubith, S.; Rotermund, H. H.; Engel, W; Von O. A.; Ertl, G.. Phys. Rev. Lett. 1990, 65, 3013.
    8. Whiteside, G. M.; Ismagilov, R. F. Science 1999, 284, 89.
    9. Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525.
    10. Hamley, I. W. The Physics of Block Copolymer, VCH: Oxford University, New York, 1998.
    11. Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H. Science 1997, 276, 1401.
    12. Fogg, D. E.; Radzilowski, L. H.; Balnski, R.; Schrock, R. R.; Thomas, E. L. Macromolecules 1997, 30, 417.
    13. Forster, S.; Antonietti, M. Adv. Mater. 1998, 10, 195.
    14. Lipic, P. M.; Bates, F. S.; Hillmyer, M. A. J. Am. Chem. Soc. 1999, 120, 8963.
    15. Bita, I.; Yang, J. K. W.; Jung, Y. S.; Ross, C. A.; Thomas, E. L.; Berggren, K. K. Science 2008, 321, 939-943.
    16. Blanazs, A.; Armes, S. P.; Ryan A. J. Macromol Rapid Commun. 2009, 30, 267.
    17. Leibler, L.; Orland, H.; Wheeler, J. C. J. Chem. Phys. 1983, 79, 3550.
    18. Esumi, K.; Ueno M. Structure-performance Relationships in Surfactants, Marcel Dekke, Inc., USA, 2003.
    19. Myers, D. Surfaces, Interfaces, and Colloids: Principles and Applications, John Wiley & Sons, Inc., 2002, pp358-396.
    20. Fӧrster, S.; Antonietti, M. Adv. Mater. 1998, 10, 195.
    21. Fӧrster, S.; Hermsdorf, N.; Leube, W.; Schnablegger, H.; Regenbrecht, M.; Akari, S.; Lindner, P.; Bӧttcher, C. J. Phy. Chem. B 1999, 103, 6657.
    22. Müller, A. H. E.; Borisov, O. Self Organized Nanostructures of Amphiphilic Block Copolymers II, Advanced in Polymer Science; Springer, Germany, 2010.
    23. Rassing, J.; Attwood, D. Int. J. Pharm. 1982, 13, 47.
    24. Zhou, Z.; Chu, B. J. Colloid Interface Sci. 1988, 126, 171.
    25. González-Henríquez, C. M.; Sarabia-Vallejos, M. A.; Rodriguez-Hernandez, J. Materials 2017, 10, 232.
    26. Förster, S.; Konrad, M. J. Mater. Chem. 2003, 13, 2671.
    27. Antonietti, M.; Fӧrster, S. Adv. Mater. 2003, 15, 1323.
    28. Bates, F. S.; Fredrickson, G. H. Phys. Today 1999, 52, 32.
    29. Choucair, A.; Eisenberg, A. Eur. Phys. J. E Soft Matter 2003, 10, 37.
    30. Rodriguez-Hernandez, J.; Checot, F.; Gnanou, Y.; Lecommandoux, S. Prog. Polym. Sci. 2005, 30, 691.
    31. Carlsen, A.; Lecommandoux, S. Curr. Opin. in Colloid Interface Sci. 2009, 14, 329.
    32. Liu, L.; Pei, Y.; He, C.; Chen, L. Polym. Int. 2017, 66, 712.
    33. Meng, H.; Li G. J. Mater. Chem. A 2013, 1, 7838.
    34. Schmaljohann, D. Adv. Drug Deliv. Rev. 2006, 58, 1655.
    35. Kumar, A.; Srivastava, A.; Galaev, I. Y.; Mattiasson, B. Prog. Polym. Sci. 2007, 32, 1205.
    36. Motonov, M.; Sheparovych, R.; Lupitskyy, R.; MacWalliams, E.; Minko, S. Adv. Mater. 2008, 20, 200.
    37. Hsu, S.-P.; Chu, I-M.; Yang, J.-D. J. Appl. Polym. Sci. 2012, 125, 133.
    38. Lai, P.-L.; Hong, D.-W.; Lin, C. T.-Y.; Chen, L.-H.; Chen, W.-J.; Chu, I-M. Compos. Part B 2012, 43, 3088.
    39. Lai, P.-L.; Hong, D.-W.; Ku, K.-L.; Lai, Z.-T.; Chu, I-M. Nanomedicine: Nanotechnology, Biology, and Medicine 2014, 10, 553.
    40. Chiang, P.-R.; Lin, T.-Y.; Tsai, H.-C.; Chen, H.-L.; Liu, S.-Y.; Chen, F.-R.; Hwang, Y.-S.; Chu, I-M. Langmuir 2013, 29, 15981.
    41. Lin, J.-Y.; Lai, P.-L.; Lin, Y.-K.; Peng, S.; Lee L.-Y.; Chen, C.-N.; Chu, I-M. Polym. Chem. 2016, 7, 2976.
    42. Peng, S.; Lin, J.-Y.; Cheng, M.-H.; Wu, C.-W.; Chu, I-M. Mater. Sci. Eng. C 2016, 69, 421.
    43. Fu, C. X.; Lin, X. X.; Wang, J.; Zheng, X. Q.; Li, X. Y.; Lin, Z. F.; Lin, G. Y. J. Mater. Sci: Mater. Med. 2016, 27, 73.
    44. Lodge, T.P.; Hamersky, M.W.; Janley, W.H.; Huang, C.I.; Macromolecules 1997, 30, 6139.
    45. Hanley, J. K.; Lodge, T. P.; Huang, C. I.; Macromolecules 2000, 33, 5918.
    46. Funaki, Y.; Kumano, K.; Nakao, T.; Jinnai, H.; Yoshida, H.; Kimishima, K.; Tsutsumi, K.; Hirokawa, Y.; Hashimoto, T. Polymer 1999, 40, 7147.
    47. Favvas, E. P.; Mitropoulos, A. Ch. J. Eng. Sci. Technol. Rev. 2008, 1, 25.
    48. Chan, J. W.; Hilliard, J. E. J. Chem. Phys. 1958, 28, 258.
    49. Liu, R.; He, B.; Li, D.; Lai, Y.; Chang, J; Tang, J. Z.; Gu, Z. Int. J. Nanomedicine 2012, 7, 4433.
    50. Peng, S.; Wu, C.-W.; Lin, J.-Y.; Yang, C. Y.; Cheng, M.-H.; Chu, I-M. Mater. Sci. Eng. C 2017, 76, 181.
    51. Hsueh, H.-Y.; Chen, H.-Y.; She, M.-S.; Chen, C.-K.; Ho, R.-M.; Gwo, S.; Hasegawa, H.; Thomas E. L. Nano Lett. 2010, 10, 4994.
    52. Jiao, Z.; Wang, X.; Chen, Z. Drug Deliv. 2011, 18, 478.
    53. Choi, Y. Y.; Joo, M. K.; Sohn, Y. S.; Jeong, B. Soft Matter 2008, 4, 2383.
    54. Izunobi, J. U.; Higginbotham, C. L. J. Chem. Educ. 2011, 88, 1098.
    55. Murphy, R.; Borase, T.; Payne, C.; O'Dwyer, J.; Cryan, S.-A.; Heise, A. RSC Adv. 2016, 6, 23370.
    56. Kong, J.; Yu, S. Acta Biochim. Biophys. Sin. 2007, 39, 549.
    57. Barth, A. Biochim. Biophys. Acta 2007, 1767, 1073.
    58. Choi, Y. Y.; Jang, J. H.; Park, M. H.; Choi, B. G.; Chi B.; Jeong, B. J. Mater. Chem. 2010, 20, 3416.
    59. Angelopoulou, A.; Voulgari, E.; Diamanti, E. K.; Gournis, D.; Avgoustakis K. Eur. J. Pharm. Biopharm. 2015, 93, 18.
    60. Movagharnezhad, N.; Moghadam, P. N. Starch/Stärke 2016, 68, 314.
    61. Song, H.; Yang, G.; Huang, P.; Kong, D.; Wang W. J. Mater. Chem. B 2017, 5, 1724.
    62. Zhang, Y.; Song, H.; Zhang, H.; Huang, P.; Liu, J.; Chu, L.; Liu, J.; Wang, W.; Cheng, Z.; Kong, D. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 1512.
    63. Qiao, Y.; Ma, W.; Theyssen, N.; Chen, C.; Hou Z. Chem. Rev. 2017, 117, 6881.
    64. Fareh, F.; Demers, V.; Demarquette, N. R.; Turenne, S.; Scalzo O. Powder Technol. 2017, 320, 273.
    65. Jeong, Y.; Joo, M. K.; Bahk, K. H.; Choi, Y. Y.; Kim, H.-T.; Kim, W.-K.; Lee, H. J.; Sohn, Y. S.; Jeong B. J. Control. Release 2009, 137, 25.
    66. Ling, S.; Dinjaski, N.; Ebrahimi, D.; Wong, J. Y.; Kaplan, D. L.; Buehler, M. J. ACS Biomater. Sci. Eng. 2016, 2, 1298.
    67. Wei, M.-J.; Guo, A.-R.; Wu, Y.-X. Acta Polym. Sin. 2017, 3, 506.
    68. Choi, Y. Y.; Jeong, Y.; Joo, M. K.; Jeong B. Macromol. Biosci. 2009, 9, 869.
    69. Wang, F.; Polavarapu P. L. J. Phys. Chem. B 2001, 105, 7857.
    70. Chen, J.; Park, K. J. Control. Release 2000, 65, 73.
    71. Vidyasagar, A.; Ku, S. H.; Kim, M.; Kim, M.; Lee, H. S.; Pearce, T. R.; McCormick, A. V.; Bates, F. S.; Kokkoli E. ACS Macro Lett. 2017, 6, 1134.
    72. Fan, H.; Li, Y.; Yang, J.; Ye X. J. Phys. Chem. B 2017, 121, 9708.
    73. Trivedi R.; Kompella U. B. Nanomedicine (Lond). 2010, 5, 485.
    74. Lin, H. C. The Applications of Amphiphilic Block-copolymer In Situ Gelation for Transplanted Cell Scaffold and Sustained-release Systems―Mechanism and Optimization Study. Ph.D. Thesis, National Tsing Hua University, Hsinchu, TW, November 2019.
    75. Mark, J. E. Physical Properties of Polymers Handbook, AIP Press, New York, 1996.
    76. Wang, Y.; Guan, J.; Hawkins, N.; Porter, D.; Shao Z. Soft Matter 2014, 10, 6321.
    77. Burke J. Solubility Parameters: Theory and Application, The Oakland Museum of California, 1984.
    78. Lin, H. C.; Chen, C. Y.; Kao, C. W.; Wu, S. T.; Chen, C. L.; Shen, C. R.; Juang, J. H.; Chu, I. M. J. Polym. Res. 2020, 27, 64.

    QR CODE