研究生: |
馬維駿 Ma, Wei-Chun |
---|---|
論文名稱: |
利用溫感型胺基酸嵌段共聚物水膠自組裝不 同孔洞大小微結構與其自組裝行為探討 Self-Assembly of Mesostructures with Hierarchical Porosity through Thermosensitive Polypeptide-Containing Block Copolymer Hydrogels |
指導教授: |
朱一民
Chu, I-Ming |
口試委員: |
陳信龍
Chen, Hsin-Lung 蔡協志 Tsai, Hsieh-Chih 黃駿 Huang, Chun 姚少凌 Yao, Chao-Ling |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2020 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 109 |
中文關鍵詞: | 溫感型 、嵌段共聚物 、水膠 、自組裝 、旋節線分解 |
外文關鍵詞: | Thermosensitive, Block-copolymer, Hydrogel, Self-assembly, Spinodal-decomposition |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
某些兩親聚合物可以自組裝形成各種結構,例如水性介質中的膠束和水凝膠,具體取決於濃度或溫度。這些不同的結構在生物醫學和材料加工領域中發現了許多應用。開發了一種簡單的方法,該方法通過單組分含多肽的嵌段共聚物的自組裝來產生各種中孔結構。我們的初步結果表明,通過使用水性溶劑作為溶劑,系統比較不同鍊長的自組裝甲氧基聚(乙二醇)-嵌段-聚(L-丙氨酸)(mPEG-PA)。使用mPEG-NH2作為引髮劑,在L-丙氨酸的N-羧基酐開環聚合後,使用1H NMR和GPC確認其明確的化學結構。特定類型的聚丙氨酸(PA)二級結構可能會干擾mPEG結晶,這是由於相分離(類似於DSC結果表明丙氨酸嵌段的二級結構)所致。使用TGA系統研究了mPEG-PA系統在不同鍊長下的熱穩定性。膠凝機理是研究的重點。使用相似的方法,使用選擇性溶劑進行mPEG-PA系統的自組裝可以完全理解稀溶液中膠束行為的策略。通過使用具有不同極性的溶劑進行鑄造,只需簡單地調整鍊長,即可獲得通過SEM成像觀察到的各種溶液流延形貌,包括圓柱體和膠束聚集體。溶膠到凝膠的轉變機理可以通過富聚合物相和富水相之間的相分離來最好地解釋。可能是旋節線分解過程引起相分離。此外,由於相分離機理和不同的鍊長,可以通過SEM圖像觀察到分支和分支結構。該結果為mPEG-PA系統的行為提供了新的見解,從而使對各種應用程序的控制更加受控。
Certain amphiphilic polymers can self-assemble to form various structures, such as micelles and hydrogels in aqueous medium, depending on the concentration or temperature. These different structures have found many applications in biomedical and material processing fields. A simple method to create a variety of mesoporous structures via the self-assembly of a single composition polypeptide-containing block copolymer is developed. Our preliminary results demonstrate that, by using aqueous solvent as a solvent for systematic comparison of self-assembly methoxy poly(ethylene glycol)-block-poly(L-alanine) (mPEG-PA) in different chain lengths. Using 1H NMR and GPC to confirm their well-defined chemical structures after the ring-opening polymerization of N-carboxy anhydrides of L-alanine using mPEG-NH2 as the initiator. The specific type of polyalanine (PA) secondary structures can interfere to mPEG crystallization due to the phase-separation like secondary structure of the alanine blocks by DSC results. The thermal stabilities of mPEG-PA system in different chain lengths are systematically studied using TGA. Gelation mechanism was especially focused in the study. With similar methodology, using selective solvents for the self-assembly of mPEG-PA system can completely understand the strategy of micelles behavior in the dilute solution. Various solution-cast morphologies observed by SEM imaging including cylinders and micelles aggregates can be obtained by using solvents with different polarity for casting with simply tuning the chain lengths. The sol-to-gel transition mechanism can be best explained by phase separation between polymer-rich and water-rich phases. It might be spinodal decomposition process to cause the phase separation. Furthermore, the branch and flack structures can be observed due to phase separation mechanism and different chain lengths by SEM images. This result offers new insights into behavior of mPEG-PA system, enabling more controlled manipulation to various applications.
1. Cao, G. Nanostructures & Nanomaterials: Synthesis, Properties & Applications, Imperial College Press, London, 2004.
2. Das, B.; Subramanium, S.; Melloch, M. R. Semicond. Sci. Technol. 1993, 8, 1347.
3. Park, C.; Yoon, J.; Thomas, E. L. Polymer 2003, 44, 6725.
4. Kricheldorf, H. R. Angew. Chem. Int. Ed. 2006, 45, 5752.
5. Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
6. Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K. E.; Whitesides, G.M. J. Am. Chem. Soc. 2001,1234, 7677.
7. Jakubith, S.; Rotermund, H. H.; Engel, W; Von O. A.; Ertl, G.. Phys. Rev. Lett. 1990, 65, 3013.
8. Whiteside, G. M.; Ismagilov, R. F. Science 1999, 284, 89.
9. Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525.
10. Hamley, I. W. The Physics of Block Copolymer, VCH: Oxford University, New York, 1998.
11. Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H. Science 1997, 276, 1401.
12. Fogg, D. E.; Radzilowski, L. H.; Balnski, R.; Schrock, R. R.; Thomas, E. L. Macromolecules 1997, 30, 417.
13. Forster, S.; Antonietti, M. Adv. Mater. 1998, 10, 195.
14. Lipic, P. M.; Bates, F. S.; Hillmyer, M. A. J. Am. Chem. Soc. 1999, 120, 8963.
15. Bita, I.; Yang, J. K. W.; Jung, Y. S.; Ross, C. A.; Thomas, E. L.; Berggren, K. K. Science 2008, 321, 939-943.
16. Blanazs, A.; Armes, S. P.; Ryan A. J. Macromol Rapid Commun. 2009, 30, 267.
17. Leibler, L.; Orland, H.; Wheeler, J. C. J. Chem. Phys. 1983, 79, 3550.
18. Esumi, K.; Ueno M. Structure-performance Relationships in Surfactants, Marcel Dekke, Inc., USA, 2003.
19. Myers, D. Surfaces, Interfaces, and Colloids: Principles and Applications, John Wiley & Sons, Inc., 2002, pp358-396.
20. Fӧrster, S.; Antonietti, M. Adv. Mater. 1998, 10, 195.
21. Fӧrster, S.; Hermsdorf, N.; Leube, W.; Schnablegger, H.; Regenbrecht, M.; Akari, S.; Lindner, P.; Bӧttcher, C. J. Phy. Chem. B 1999, 103, 6657.
22. Müller, A. H. E.; Borisov, O. Self Organized Nanostructures of Amphiphilic Block Copolymers II, Advanced in Polymer Science; Springer, Germany, 2010.
23. Rassing, J.; Attwood, D. Int. J. Pharm. 1982, 13, 47.
24. Zhou, Z.; Chu, B. J. Colloid Interface Sci. 1988, 126, 171.
25. González-Henríquez, C. M.; Sarabia-Vallejos, M. A.; Rodriguez-Hernandez, J. Materials 2017, 10, 232.
26. Förster, S.; Konrad, M. J. Mater. Chem. 2003, 13, 2671.
27. Antonietti, M.; Fӧrster, S. Adv. Mater. 2003, 15, 1323.
28. Bates, F. S.; Fredrickson, G. H. Phys. Today 1999, 52, 32.
29. Choucair, A.; Eisenberg, A. Eur. Phys. J. E Soft Matter 2003, 10, 37.
30. Rodriguez-Hernandez, J.; Checot, F.; Gnanou, Y.; Lecommandoux, S. Prog. Polym. Sci. 2005, 30, 691.
31. Carlsen, A.; Lecommandoux, S. Curr. Opin. in Colloid Interface Sci. 2009, 14, 329.
32. Liu, L.; Pei, Y.; He, C.; Chen, L. Polym. Int. 2017, 66, 712.
33. Meng, H.; Li G. J. Mater. Chem. A 2013, 1, 7838.
34. Schmaljohann, D. Adv. Drug Deliv. Rev. 2006, 58, 1655.
35. Kumar, A.; Srivastava, A.; Galaev, I. Y.; Mattiasson, B. Prog. Polym. Sci. 2007, 32, 1205.
36. Motonov, M.; Sheparovych, R.; Lupitskyy, R.; MacWalliams, E.; Minko, S. Adv. Mater. 2008, 20, 200.
37. Hsu, S.-P.; Chu, I-M.; Yang, J.-D. J. Appl. Polym. Sci. 2012, 125, 133.
38. Lai, P.-L.; Hong, D.-W.; Lin, C. T.-Y.; Chen, L.-H.; Chen, W.-J.; Chu, I-M. Compos. Part B 2012, 43, 3088.
39. Lai, P.-L.; Hong, D.-W.; Ku, K.-L.; Lai, Z.-T.; Chu, I-M. Nanomedicine: Nanotechnology, Biology, and Medicine 2014, 10, 553.
40. Chiang, P.-R.; Lin, T.-Y.; Tsai, H.-C.; Chen, H.-L.; Liu, S.-Y.; Chen, F.-R.; Hwang, Y.-S.; Chu, I-M. Langmuir 2013, 29, 15981.
41. Lin, J.-Y.; Lai, P.-L.; Lin, Y.-K.; Peng, S.; Lee L.-Y.; Chen, C.-N.; Chu, I-M. Polym. Chem. 2016, 7, 2976.
42. Peng, S.; Lin, J.-Y.; Cheng, M.-H.; Wu, C.-W.; Chu, I-M. Mater. Sci. Eng. C 2016, 69, 421.
43. Fu, C. X.; Lin, X. X.; Wang, J.; Zheng, X. Q.; Li, X. Y.; Lin, Z. F.; Lin, G. Y. J. Mater. Sci: Mater. Med. 2016, 27, 73.
44. Lodge, T.P.; Hamersky, M.W.; Janley, W.H.; Huang, C.I.; Macromolecules 1997, 30, 6139.
45. Hanley, J. K.; Lodge, T. P.; Huang, C. I.; Macromolecules 2000, 33, 5918.
46. Funaki, Y.; Kumano, K.; Nakao, T.; Jinnai, H.; Yoshida, H.; Kimishima, K.; Tsutsumi, K.; Hirokawa, Y.; Hashimoto, T. Polymer 1999, 40, 7147.
47. Favvas, E. P.; Mitropoulos, A. Ch. J. Eng. Sci. Technol. Rev. 2008, 1, 25.
48. Chan, J. W.; Hilliard, J. E. J. Chem. Phys. 1958, 28, 258.
49. Liu, R.; He, B.; Li, D.; Lai, Y.; Chang, J; Tang, J. Z.; Gu, Z. Int. J. Nanomedicine 2012, 7, 4433.
50. Peng, S.; Wu, C.-W.; Lin, J.-Y.; Yang, C. Y.; Cheng, M.-H.; Chu, I-M. Mater. Sci. Eng. C 2017, 76, 181.
51. Hsueh, H.-Y.; Chen, H.-Y.; She, M.-S.; Chen, C.-K.; Ho, R.-M.; Gwo, S.; Hasegawa, H.; Thomas E. L. Nano Lett. 2010, 10, 4994.
52. Jiao, Z.; Wang, X.; Chen, Z. Drug Deliv. 2011, 18, 478.
53. Choi, Y. Y.; Joo, M. K.; Sohn, Y. S.; Jeong, B. Soft Matter 2008, 4, 2383.
54. Izunobi, J. U.; Higginbotham, C. L. J. Chem. Educ. 2011, 88, 1098.
55. Murphy, R.; Borase, T.; Payne, C.; O'Dwyer, J.; Cryan, S.-A.; Heise, A. RSC Adv. 2016, 6, 23370.
56. Kong, J.; Yu, S. Acta Biochim. Biophys. Sin. 2007, 39, 549.
57. Barth, A. Biochim. Biophys. Acta 2007, 1767, 1073.
58. Choi, Y. Y.; Jang, J. H.; Park, M. H.; Choi, B. G.; Chi B.; Jeong, B. J. Mater. Chem. 2010, 20, 3416.
59. Angelopoulou, A.; Voulgari, E.; Diamanti, E. K.; Gournis, D.; Avgoustakis K. Eur. J. Pharm. Biopharm. 2015, 93, 18.
60. Movagharnezhad, N.; Moghadam, P. N. Starch/Stärke 2016, 68, 314.
61. Song, H.; Yang, G.; Huang, P.; Kong, D.; Wang W. J. Mater. Chem. B 2017, 5, 1724.
62. Zhang, Y.; Song, H.; Zhang, H.; Huang, P.; Liu, J.; Chu, L.; Liu, J.; Wang, W.; Cheng, Z.; Kong, D. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 1512.
63. Qiao, Y.; Ma, W.; Theyssen, N.; Chen, C.; Hou Z. Chem. Rev. 2017, 117, 6881.
64. Fareh, F.; Demers, V.; Demarquette, N. R.; Turenne, S.; Scalzo O. Powder Technol. 2017, 320, 273.
65. Jeong, Y.; Joo, M. K.; Bahk, K. H.; Choi, Y. Y.; Kim, H.-T.; Kim, W.-K.; Lee, H. J.; Sohn, Y. S.; Jeong B. J. Control. Release 2009, 137, 25.
66. Ling, S.; Dinjaski, N.; Ebrahimi, D.; Wong, J. Y.; Kaplan, D. L.; Buehler, M. J. ACS Biomater. Sci. Eng. 2016, 2, 1298.
67. Wei, M.-J.; Guo, A.-R.; Wu, Y.-X. Acta Polym. Sin. 2017, 3, 506.
68. Choi, Y. Y.; Jeong, Y.; Joo, M. K.; Jeong B. Macromol. Biosci. 2009, 9, 869.
69. Wang, F.; Polavarapu P. L. J. Phys. Chem. B 2001, 105, 7857.
70. Chen, J.; Park, K. J. Control. Release 2000, 65, 73.
71. Vidyasagar, A.; Ku, S. H.; Kim, M.; Kim, M.; Lee, H. S.; Pearce, T. R.; McCormick, A. V.; Bates, F. S.; Kokkoli E. ACS Macro Lett. 2017, 6, 1134.
72. Fan, H.; Li, Y.; Yang, J.; Ye X. J. Phys. Chem. B 2017, 121, 9708.
73. Trivedi R.; Kompella U. B. Nanomedicine (Lond). 2010, 5, 485.
74. Lin, H. C. The Applications of Amphiphilic Block-copolymer In Situ Gelation for Transplanted Cell Scaffold and Sustained-release Systems―Mechanism and Optimization Study. Ph.D. Thesis, National Tsing Hua University, Hsinchu, TW, November 2019.
75. Mark, J. E. Physical Properties of Polymers Handbook, AIP Press, New York, 1996.
76. Wang, Y.; Guan, J.; Hawkins, N.; Porter, D.; Shao Z. Soft Matter 2014, 10, 6321.
77. Burke J. Solubility Parameters: Theory and Application, The Oakland Museum of California, 1984.
78. Lin, H. C.; Chen, C. Y.; Kao, C. W.; Wu, S. T.; Chen, C. L.; Shen, C. R.; Juang, J. H.; Chu, I. M. J. Polym. Res. 2020, 27, 64.