研究生: |
胡忠堯 Hu, Chung-Yao |
---|---|
論文名稱: |
在廣義度量空間上之Korovkin型近似定理 Korovkin type approximation theorem in generalized metric space |
指導教授: |
陳正忠
Chen, Jeng-Chung |
口試委員: |
施信宏
Shih, Hsin-Hung 李俊璋 Lee, Chiun-Chang 陳正忠 Chen, Jeng-Chung |
學位類別: |
碩士 Master |
系所名稱: |
南大校區系所調整院務中心 - 應用數學系所 應用數學系所(English) |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 20 |
中文關鍵詞: | Korovkin型近似定理 、偏度量空間 、準度量空間 、多值 |
外文關鍵詞: | Korovkin type approximation, partial metric, metric-like, multi-valued |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要目的是研究關於單值和多值函數的Korovkin型近似定理的結果。對於實數值單值函數的Korovkin型近似定理,我們將討論函數定義在偏度量空間和準度量空間的均勻收斂。對於多值函數的Korovkin型近似定理,我們將討論從偏度量空間均勻收斂到實數中封閉且有界的集合和準度量空間均勻收斂到實數中封閉且有界的集合兩種情形。
The paper is concerned with the result of the Korovkin type approximation theorem related to functions of single-valued and multi-valued. For the study of Korovkin type approximation theorem of single-valued functions, we discuss the uniform convergence in the space of functions define on the space of partial metric and metric-like. As for the Korovkin type approximation theorem of multi-valued functions, we discuss the uniform convergence in the space of functions from partial metric space to closed and bounded sets of real number and the functions from metric-like space to closed and bounded sets of real number.
[1] Abdullah Alotaibi, and M. Mursaleen. Korovkin type theorems via Lacunary equistatistical convergence. Filomat 30:13, (2016):3641-3647.
[2] Altomare, F. Krovkin-type theorems and approximation by positive linear operators. Surveys in Approximation Theory, (2010):93-105.
[3] Amini-Harandi, A. Metric-like spaces, partial metric spaces and fixed points. Fixed Point Theory and Applications 2012 , (2012):204.
[4] Aydi Hassen, Mujahid Abbas, and Calogero Vetro. Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces. Topology and its Applications, 159.14(2012):3234-3242.
[5] Carlo Bardaro, and Ilaria Mantellini. Korovkin theorem in modular spaces. Annales societatis mathematicae polonaea, (2007):239-253.
[6] Carlo Bardaro, and Ilaria Mantellini. A Korovkin theorem in multivariate modular function spaces. Journal of function spaces and Applications Volume 7, Number 2, (2009):105-120.
[7] Chen, C.M., Karapnar, E. Fixed point result for the α-Meir-Keeler contraction on partial Hausdorff metric spaces. Journal of Inequalities and
Applications 2013, (2013):410.
[8] E. Karapnar, P. Salimi. Dislocated metric space to metric spaces with some fixed point theorems. Fixed Point Theory and Application 2013, (2013):222.
[9] Fabiola Didone, Michele Giannuzzi, and Luca Paulon. Korovkin theorems and applications in approximation theory and numerical linear algebra. (2011):1-36.
[10] Fadime Dirik, and Kamil Demirci. Korovkin type approximation theorem for functions of two variables in statistical sense. Turk J Math 34, (2010):73-83.
[11] Fadime Dirik, and Kamil Demirci. Statistical Korovkin type theory for Matrix-valued functions of two variables. Applied Mathematics E-Notes, 15, (2015):327-341.
[12] G. A. Anastassiou. Self adjoint operator Korovkin type quantitative approximations. Acta Math. Univ. Comenianae Vol. LXXXVI, 1(2017):165-186.
[13] Karapnar, E, Erhan, IM, Ulus, AY. Fixed point theorem for cyclic maps on partial metric spaces. Appl. Math. Inf. Sci, 6(1), (2012):239-244.
[14] Kosaku Yosida. Functional Analysis third edition. Springer-Verlag Berlin Heidelberg New York, (1971):8-9.
[15] Mursaleen, M., and Adem Kilicman. Korovkin Second Theorem via B-Statistical A-Summability. Abstract and Applied Analysis Volume 2013, (2013), Article ID 598963, 6 pages.
[16] Mursaleen, Mohammad, and Abdullah Alotaibi. Korovkin type approximation theorem for functions of two variables through statistical A-summability. Advances in Difference Equations 2012.1, (2012):1-10.
[17] P.P.Korovkin: Liner Operators and Approximation Therom,Translated from the Russian Edition, (1959).
[18] S. Oltra, O. Valero. Banach's _xed point theorem for partial metric space, Rend. Istid Math. Univ. Trieste, 36(2004):17-26.
[19] S.G. Matthews. Partial metric topology, Proc. 8th Summer of Conference on General Topology and Applications, Ann. New York Aced. Sci., 728(1994):183-197.
[20] Sevda Orhan, Fadime Dirik, and Kamil Demirci. A Korovkin type approximation for double sequences of positive linear operators of two variables in statistical A-summability sense. Miskolc Mathematical Notes
Vol. 15, (2014):625-633.
[21] Tuncer Acar, and Fadime Dirik. Korovkin type theorems in weighted Lp-space via summation process. The Scienti_c World Journal Volume 2013, (2013), Article ID 534054, 6 pages.