研究生: |
亞尼爾 Pulikkathodi, Anil Kumar |
---|---|
論文名稱: |
以氮化鋁鎵/氮化鎵高電子遷移率電晶體作為癌細胞與胞外囊泡之偵測以及生物電子之研究 AlGaN/GaN high electron mobility transistor for the detection and study of bioelectricity of cancer cells and extracellular vesicles |
指導教授: |
王玉麟
Wang, Yu-Lin |
口試委員: |
李國賓
陳致真 董國忠 張幸治 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 163 |
中文關鍵詞: | 場效應晶體管 、AlGan/GaN 、癌細胞 、細胞外囊泡 |
外文關鍵詞: | Field effect transistor, AlGan/GaN, cancer cells, extracellular vesicles |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
該研究討論了用於細胞和亞細胞診斷的電雙層門控,高場調製AlGaN / GaN高電子遷移率晶體管(HEMT)生物傳感器的設計,製造和表徵。 GaN HEMT芯片通過簡單而堅固的封裝工藝組裝到熱固性聚合物基板上的傳感器陣列中。生物傳感器陣列用於捕獲,檢測和計數細胞,例如循環腫瘤細胞(CTC)和癌症幹細胞(CSC)。傳感器陣列具有高達單細胞分辨率的高靈敏度。與常規全細胞測定相比,本方法可以在非常短的時間(5分鐘)內以極低的成本檢測其天然電解質組合物中的細胞。研究並報導了細胞結合在不同測試環境中的作用。 GaN HEMT生物傳感器可以動態監測生物電信號,例如癌細胞的膜電位,可用於研究離子通道門控。研究了高離子強度溶液中增強的靈敏度,並研究了細胞和基質界面微環境的物理相互作用。已經證明,使用高場調製FET傳感機制,我們可以在高離子強度溶液中檢測超過德拜長度一個數量級的生物分子。提出了一種用於表徵基於FET的傳感器的定量模型。該傳感器陣列有可能用作各種應用中的臨床診斷工具,例如檢測稀有細胞,病原體和研究細胞相互作用的動態。重新設計傳感結構以檢測和計數細胞外囊泡(EV),特別是外來體,作為亞細胞間質負責與細胞間的聯繫。 CD-63抗體功能化GaN HEMT傳感器用於在高離子強度溶液中計數EV,無需額外的樣品預處理。 EV檢測的動態範圍為107-1010 EV / mL,這與現有的金標準納米粒子跟踪分析相當。可以使用我們的HEMT生物傳感器基於EV-二抗結合誘導的傳感器響應變化來表徵EV上的表面標誌物。還研究和報告了EV外部刺激下的傳感器特性。該研究的重點是開發具有診斷和預後潛力的快速EV量化方法。
This research discusses the design, fabrication and characterization of electrical double layer gated, high field modulated AlGaN/GaN high electron mobility transistor (HEMT) based biosensor for cellular and sub-cellular diagnostics. GaN HEMT chips are assembled into a sensor array on a thermo-curable polymer substrate in a simple and robust packaging process. The biosensor array is used to capture, detect and count cells such as circulating tumor cells (CTCs) and cancer stem cells (CSCs). The sensor array is highly sensitive with up to single cell resolution. The present method can detect cells in their native electrolyte composition, in a very short time (5 mins) with extremely low cost compared to the conventional whole cell assays. The effect of cellular binding in different test environments is studied and reported. GaN HEMT biosensor can dynamically monitor bioelectric signals such as membrane potential of cancer cells which can be used to study ion channel gating. The enhanced sensitivity in high ionic strength solution is investigated and the physical interactions at the microenvironment of the cell and substrate interface is studied. It is demonstrated that using the high field modulated FET sensing mechanism we can detect biomolecules one order in magnitude beyond the Debye length in high ionic strength solution. A quantitative model is proposed for the characterization of FET based sensor. This sensor array has the potential to be used as a point of care diagnostic tool in various applications such as detection of rare cells, pathogens and studying the dynamics of cellular interactions. The sensing structure is re-designed to detect and enumerate extracellular vesicles (EVs), exosomes in particular, which are sub-cellular components used for cellular communication. CD-63 Antibody functionalized GaN HEMT sensor is used to enumerate EVs in high ionic strength solution, without requiring additional sample pre-treatments. The dynamic range of EV detection is 107-1010 EV/mL which is comparable with nanoparticle tracking analysis which is the existing gold standard. The surface markers on EV can be characterized using our HEMT biosensor based on the EV-secondary antibody binding induced change in sensor response. The sensor characteristics under external stimulation of EV is also studied and reported. This research focuses on developing a rapid EV quantification methodology which has diagnostic and prognostic potentials.
[1] P Damborský, J Švitel, J Katrlík, Optical biosensors, Essays in Biochemistry, 60(2016) 91-100.
[2] D Grieshaber, R MacKenzie, J Vörös, E Reimhult, Electrochemical Biosensors - Sensor Principles and Architectures, Sensors (Basel, Switzerland), 8(2008) 1400-58.
[3] AN Sokolov, ME Roberts, Z Bao, Fabrication of low-cost electronic biosensors, Materials Today, 12(2009) 12-20.
[4] P Skládal, Piezoelectric biosensors, TrAC Trends in Analytical Chemistry, 79(2016) 127-33.
[5] Y Wang, H Xu, J Zhang, G Li, Electrochemical Sensors for Clinic Analysis, Sensors (Basel, Switzerland), 8(2008) 2043-81.
[6] NDB Le, M Yazdani, VM Rotello, Array-based sensing using nanoparticles: an alternative approach for cancer diagnostics, Nanomedicine (London, England), 9(2014) 1487-98.
[7] B Veigas, E Fortunato, PV Baptista, Field Effect Sensors for Nucleic Acid Detection: Recent Advances and Future Perspectives, Sensors (Basel, Switzerland), 15(2015) 10380-98.
[8] P Namdari, H Daraee, A Eatemadi, Recent Advances in Silicon Nanowire Biosensors: Synthesis Methods, Properties, and Applications, Nanoscale Research Letters, 11(2016) 406.
[9] I Cimalla, F Will, K Tonisch, M Niebelschütz, V Cimalla, V Lebedev, et al., AlGaN/GaN biosensor—effect of device processing steps on the surface properties and biocompatibility, Sensors and Actuators B: Chemical, 123(2007) 740-8.
[10] H Lee, M Bae, S-H Jo, J-K Shin, D Son, C-H Won, et al., AlGaN/GaN High Electron Mobility Transistor-Based Biosensor for the Detection of C-Reactive Protein, Sensors, 15(2015) 18416.
[11] B Stefan, H Clemens, V Aleksandar, AR Mark, Predictive simulations and optimization of nanowire field-effect PSA sensors including screening, Nanotechnology, 24(2013) 225503.
[12] MG Fakih, Metastatic Colorectal Cancer: Current State and Future Directions, Journal of Clinical Oncology, 33(2015) 1809-24.
[13] EJ Kuipers, WM Grady, D Lieberman, T Seufferlein, JJ Sung, PG Boelens, et al., Colorectal cancer, 1(2015) 15065.
[14] N Aceto, M Toner, S Maheswaran, DA Haber, En Route to Metastasis: Circulating Tumor Cell Clusters and Epithelial-to-Mesenchymal Transition, Trends in Cancer, 1 44-52.
[15] W-S Tsai, J-S Chen, H-J Shao, J-C Wu, J-M Lai, S-H Lu, et al., Circulating Tumor Cell Count Correlates with Colorectal Neoplasm Progression and Is a Prognostic Marker for Distant Metastasis in Non-Metastatic Patients, 6(2016) 24517.
[16] JT Kaifi, M Kunkel, A Das, RA Harouaka, DT Dicker, G Li, et al., Circulating tumor cell isolation during resection of colorectal cancer lung and liver metastases: a prospective trial with different detection techniques, Cancer Biology & Therapy, 16(2015) 699-708.
[17] B Hong, Y Zu, Detecting Circulating Tumor Cells: Current Challenges and New Trends, Theranostics, 3(2013) 377-94.
[18] E Racila, D Euhus, AJ Weiss, C Rao, J McConnell, LWMM Terstappen, et al., Detection and characterization of carcinoma cells in the blood, Proceedings of the National Academy of Sciences, 95(1998) 4589-94.
[19] HK Lin, S Zheng, AJ Williams, M Balic, S Groshen, HI Scher, et al., Portable Filter-Based Microdevice for Detection and Characterization of Circulating Tumor Cells, Clinical cancer research : an official journal of the American Association for Cancer Research, 16(2010) 5011-8.
[20] SL Stott, C-H Hsu, DI Tsukrov, M Yu, DT Miyamoto, BA Waltman, et al., Isolation of circulating tumor cells using a microvortex-generating herringbone-chip, Proceedings of the National Academy of Sciences of the United States of America, 107(2010) 18392-7.
[21] AA Adams, PI Okagbare, J Feng, ML Hupert, D Patterson, J Göttert, et al., Highly Efficient Circulating Tumor Cell Isolation from Whole Blood and Label-Free Enumeration Using Polymer-Based Microfluidics with an Integrated Conductivity Sensor, Journal of the American Chemical Society, 130(2008) 8633-41.
[22] L Bousse, Whole cell biosensors, Sensors and Actuators B: Chemical, 34(1996) 270-5.
[23] Y Fang, Label-Free Cell-Based Assays with Optical Biosensors in Drug Discovery, ASSAY and Drug Development Technologies, 4(2006) 583-95.
[24] Y Fang, AM Ferrie, NH Fontaine, J Mauro, J Balakrishnan, Resonant Waveguide Grating Biosensor for Living Cell Sensing, Biophysical Journal, 91(2006) 1925-40.
[25] P Banerjee, AK Bhunia, Mammalian cell-based biosensors for pathogens and toxins, Trends in Biotechnology, 27(2009) 179-88.
[26] Y Yanase, T Hiragun, K Ishii, T Kawaguchi, T Yanase, M Kawai, et al., Surface Plasmon Resonance for Cell-Based Clinical Diagnosis, Sensors, 14(2014) 4948.
[27] RL Rich, DG Myszka, BIACORE J: a new platform for routine biomolecular interaction analysis†, Journal of Molecular Recognition, 14(2001) 223-8.
[28] M Puiu, C Bala, SPR and SPR Imaging: Recent Trends in Developing Nanodevices for Detection and Real-Time Monitoring of Biomolecular Events, Sensors (Basel, Switzerland), 16(2016) 870.
[29] AA Maradudin, I Simonsen, J Polanco, RM Fitzgerald, Rayleigh and Wood anomalies in the diffraction of light from a perfectly conducting reflection grating, Journal of Optics, 18(2016) 024004.
[30] K Tiefenthaler, W Lukosz, Integrated optical switches and gas sensors, Opt Lett, 9(1984) 137-9.
[31] G Li, AM Ferrie, Y Fang, Label-Free Profiling of Ligands for Endogenous Gpcrs Using a Cell-Based High-Throughput Screening Technology, JALA: Journal of the Association for Laboratory Automation, 11(2006) 181-7.
[32] BT Cunningham, P Li, S Schulz, B Lin, C Baird, J Gerstenmaier, et al., Label-Free Assays on the BIND System, Journal of Biomolecular Screening, 9(2004) 481-90.
[33] Label-Free Biosensors for Cell Biology, International Journal of Electrochemistry, 2011(2011).
[34] R McGuinness, Impedance-based cellular assay technologies: recent advances, future promise, Current Opinion in Pharmacology, 7(2007) 535-40.
[35] R Szulcek, HJ Bogaard, GP van Nieuw Amerongen, Electric Cell-substrate Impedance Sensing for the Quantification of Endothelial Proliferation, Barrier Function, and Motility, Journal of Visualized Experiments : JoVE, (2014) 51300.
[36] JHT Luong, M Habibi-Rezaei, J Meghrous, C Xiao, KB Male, A Kamen, Monitoring Motility, Spreading, and Mortality of Adherent Insect Cells Using an Impedance Sensor, Analytical Chemistry, 73(2001) 1844-8.
[37] C Xiao, B Lachance, G Sunahara, JHT Luong, An In-Depth Analysis of Electric Cell−Substrate Impedance Sensing To Study the Attachment and Spreading of Mammalian Cells, Analytical Chemistry, 74(2002) 1333-9.
[38] GJ Ciambrone, VF Liu, DC Lin, RP McGuinness, GK Leung, S Pitchford, Cellular Dielectric Spectroscopy: A Powerful New Approach to Label-Free Cellular Analysis, Journal of Biomolecular Screening, 9(2004) 467-80.
[39] C-S Lee, S Kim, M Kim, Ion-Sensitive Field-Effect Transistor for Biological Sensing, Sensors, 9(2009) 7111.
[40] P Bergveld, Exploiting the dynamic properties of FET-based chemical sensors, Journal of Physics E: Scientific Instruments, 22(1989) 678.
[41] A Sibbald, AK Covington, RF Carter, Online patient-monitoring system for the simultaneous analysis of blood K+, Ca2+, Na+ and pH using a quadruple-function ChemFET integrated-circuit sensor, Medical and Biological Engineering and Computing, 23(1985) 329-38.
[42] S Caras, J Janata, Field effect transistor sensitive to penicillin, Analytical Chemistry, 52(1980) 1935-7.
[43] F Ren, SJ Pearton, Sensors using AlGaN/GaN based high electron mobility transistor for environmental and bio-applications, physica status solidi (c), 9(2012) 393-8.
[44] R Fisher, L Pusztai, C Swanton, Cancer heterogeneity: implications for targeted therapeutics, British Journal of Cancer, 108(2013) 479-85.
[45] S Dattatreya, Metastatic colorectal cancer-prolonging overall survival with targeted therapies, South Asian Journal of Cancer, 2(2013) 179-85.
[46] S Roy, APN Majumdar, Cancer Stem Cells in Colorectal Cancer: Genetic and Epigenetic Changes, Journal of stem cell research & therapy, Suppl 7(2012) 10342.
[47] C Odoux, H Fohrer, T Hoppo, L Guzik, DB Stolz, DW Lewis, et al., A Stochastic Model for Cancer Stem Cell Origin in Metastatic Colon Cancer, Cancer research, 68(2008) 6932-41.
[48] A Kreso, John E Dick, Evolution of the Cancer Stem Cell Model, Cell Stem Cell, 14(2014) 275-91.
[49] M-H Yang, A Imrali, C Heeschen, Circulating cancer stem cells: the importance to select, Chinese Journal of Cancer Research, 27(2015) 437-49.
[50] CD Cone, THE ROLE OF THE SURFACE ELECTRICAL TRANSMEMBRANE POTENTIAL IN NORMAL AND MALIGNANT MITOGENESIS, Annals of the New York Academy of Sciences, 238(1974) 420-35.
[51] R. Binggeli, I.L. Cameron, Cellular Potentials of Normal and Cancerous Fibroblasts and Hepatocytes, Cancer Research, 40(1980) 1830-5.
[52] A. Marino, D. M. Morris, M. A. Schwalke, I. G. Iliev, S. Rogers, Electrical Potential Measurements in Human Breast Cancer and Benign Lesions1994.
[53] M Yang, W Brackenbury, Membrane potential and cancer progression, Frontiers in Physiology, 4(2013).
[54] D. Gupta, C.A. Lammersfeld, J.L. Burrows, S.L. Dahlk, P.G. Vashi, J.F. Grutsch, et al., Bioelectrical impedance phase angle in clinical practice: implications for prognosis in advanced colorectal cancer, The American Journal of Clinical Nutrition, 80(2004) 1634-8.
[55] D.S. Adams, A New Tool for Tissue Engineers: Ions As Regulators of Morphogenesis During Development and Regeneration, Tissue Engineering Part A, 14(2008) 1461-8.
[56] R.S. Kass, The channelopathies: novel insights into molecular and genetic mechanisms of human disease, Journal of Clinical Investigation, 115(2005) 1986-9.
[57] H. Richard, M. Alain, Muscarinic activation of ionic currents measured by a new whole-cell recording method, The Journal of General Physiology, 92(1988) 145-59.
[58] M. Wang, O. Orwar, J. Olofsson, S.G. Weber, Single-cell electroporation, Analytical and Bioanalytical Chemistry, 397(2010) 3235-48.
[59] D.S. Adams, M. Levin, General Principles for Measuring Resting Membrane Potential and Ion Concentration Using Fluorescent Bioelectricity Reporters, Cold Spring Harbor protocols, 2012(2012) 385-97.
[60] L. Ephraim, S. Martin, Spectroscopic evidence for interactions of merocyanine 540 with valinomycin in the presence of potassium, FEBS Letters, 111(1980) 281-4.
[61] G. van Niel, G. D'Angelo, G. Raposo, Shedding light on the cell biology of extracellular vesicles, Nature Reviews Molecular Cell Biology, 19(2018) 213.
[62] A. Lo Cicero, P.D. Stahl, G. Raposo, Extracellular vesicles shuffling intercellular messages: for good or for bad, Current Opinion in Cell Biology, 35(2015) 69-77.
[63] M. Colombo, G. Raposo, C. Théry, Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles, Annual Review of Cell and Developmental Biology, 30(2014) 255-89.
[64] J.C. Akers, D. Gonda, R. Kim, B.S. Carter, C.C. Chen, Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies, Journal of Neuro-Oncology, 113(2013) 1-11.
[65] A.V. Vlassov, S. Magdaleno, R. Setterquist, R. Conrad, Exosomes: Current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials, Biochimica et Biophysica Acta (BBA) - General Subjects, 1820(2012) 940-8.
[66] F. Jansen, G. Nickenig, N. Werner, Extracellular Vesicles in Cardiovascular Disease, Potential Applications in Diagnosis, Prognosis, and Epidemiology, 120(2017) 1649-57.
[67] M. Szajnik, M. Derbis, M. Lach, P. Patalas, M. Michalak, H. Drzewiecka, et al., Exosomes in Plasma of Patients with Ovarian Carcinoma: Potential Biomarkers of Tumor Progression and Response to Therapy, Gynecology & obstetrics (Sunnyvale, Calif), Suppl 4(2013) 003.
[68] J. Baran, M. Baj-Krzyworzeka, K. Weglarczyk, R. Szatanek, M. Zembala, J. Barbasz, et al., Circulating tumour-derived microvesicles in plasma of gastric cancer patients, Cancer Immunology, Immunotherapy, 59(2010) 841-50.
[69] H.K. Kim, K.S. Song, Y.S. Park, Y.H. Kang, Y.J. Lee, K.R. Lee, et al., Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor, European Journal of Cancer, 39(2003) 184-91.
[70] G. Rabinowits, C. Gerçel-Taylor, J.M. Day, D.D. Taylor, G.H. Kloecker, Exosomal MicroRNA: A Diagnostic Marker for Lung Cancer, Clinical Lung Cancer, 10(2009) 42-6.
[71] A.L.S. Revenfeld, R. Bæk, M.H. Nielsen, A. Stensballe, K. Varming, M. Jørgensen, Diagnostic and Prognostic Potential of Extracellular Vesicles in Peripheral Blood, Clinical Therapeutics, 36(2014) 830-46.
[72] C-P Hsu, P-C Chen, AK Pulikkathodi, Y-H Hsiao, C-C Chen, Y-L Wang, A Package Technology for Miniaturized Field-Effect Transistor-Based Biosensors and the Sensor Array, ECS Journal of Solid State Science and Technology, 6(2017) Q63-Q7.
[73] L-Y Hung, C-H Wang, Y-J Che, C-Y Fu, H-Y Chang, K Wang, et al., Screening of aptamers specific to colorectal cancer cells and stem cells by utilizing On-chip Cell-SELEX, 5(2015) 10326.
[74] C-H Chu, I Sarangadharan, A Regmi, Y-W Chen, C-P Hsu, W-H Chang, et al., Beyond the Debye length in high ionic strength solution: direct protein detection with field-effect transistors (FETs) in human serum, Scientific Reports, 7(2017) 5256.
[75] C.-C. Chen, C. Cang, S. Fenske, E. Butz, Y.-K. Chao, M. Biel, et al., Patch-clamp technique to characterize ion channels in enlarged individual endolysosomes, Nat Protocols, 12(2017) 1639-58.
[76] P.J. White, B. Biskup, J.T.M. Elzenga, U. Homann, G. Thiel, F. Wissing, et al., Advanced patch-clamp techniques and single-channel analysis, Journal of Experimental Botany, 50(1999) 1037-54.
[77] E. Fluhler, V.G. Burnham, L.M. Loew, Spectra, membrane binding, and potentiometric responses of new charge shift probes, Biochemistry, 24(1985) 5749-55.
[78] Peter B. Kruskal, Z. Jiang, T. Gao, Charles M. Lieber, Beyond the Patch Clamp: Nanotechnologies for Intracellular Recording, Neuron, 86 21-4.
[79] S. Tsuda, Microfluidic Whole-Cell Biosensor, in: B. Bhushan (Ed.) Encyclopedia of Nanotechnology, Springer Netherlands, Dordrecht, 2014, pp. 1-6.
[80] RC Niemtzow, Transmembrane Potentials and Characteristics of Immune and Tumor Cells: CRC Press; 1985.
[81] DT Baptista-Hon, FM Robertson, GB Robertson, SJ Owen, GW Rogers, EL Lydon, et al., Potent inhibition by ropivacaine of metastatic colon cancer SW620 cell invasion and NaV1.5 channel function, BJA: British Journal of Anaesthesia, 113(2014) i39-i48.
[82] S Kitchen, S Bazin, Clayton's Electrotherapy: Saunders; 1996.
[83] M Yang, W Brackenbury, Membrane potential and cancer progression, Frontiers in Physiology, 4(2013).
[84] A.K. Pulikkathodi, I. Sarangadharan, C.-P. Hsu, Y.-H. Chen, L.-Y. Hung, G.-Y. Lee, et al., Enumeration of circulating tumor cells and investigation of cellular responses using aptamer-immobilized AlGaN/GaN high electron mobility transistor sensor array, Sensors and Actuators B: Chemical, 257(2018) 96-104.
[85] A Zhang, TPO Cheng, BM Altura, Magnesium regulates intracellular free ionized calcium concentration and cell geometry in vascular smooth muscle cells, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1134(1992) 25-9.
[86] FC Mooren, M Moreno Geada, J Singh, R Stoll, W Beil, W Domschke, Effects of extracellular Mg2+ concentration on intracellular signalling and acid secretion in rat gastric parietal cells, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1358(1997) 279-88.
[87] MT González-Martínez, Induction of a Sodium-dependent Depolarization by External Calcium Removal in Human Sperm, Journal of Biological Chemistry, 278(2003) 36304-10.
[88] T Fazekas, BJ Scherlag, M Vos, HJJ Wellens, R Lazzara, Magnesium and the heart: Antiarrhythmic therapy with magnesium, Clinical Cardiology, 16(1993) 768-74.
[89] X.-B. He, S.-H. Yi, Y.-H. Rhee, H. Kim, Y.-M. Han, S.-H. Lee, et al., Prolonged Membrane Depolarization Enhances Midbrain Dopamine Neuron Differentiation via Epigenetic Histone Modifications, STEM CELLS, 29(2011) 1861-73.
[90] E.S. Levitan, R. Gealy, J.S. Trimmer, K. Takimoto, Membrane Depolarization Inhibits Kv1.5 Voltage-gated K Channel Gene Transcription and Protein Expression in Pituitary Cells, Journal of Biological Chemistry, 270(1995) 6036-41.
[91] S. Sundelacruz, M. Levin, D.L. Kaplan, Role of Membrane Potential in the Regulation of Cell Proliferation and Differentiation, Stem Cell Reviews and Reports, 5(2009) 231-46.
[92] J. Cervera, S. Meseguer, S. Mafe, The interplay between genetic and bioelectrical signaling permits a spatial regionalisation of membrane potentials in model multicellular ensembles, 6(2016) 35201.
[93] Cadmium block of squid calcium currents. Macroscopic data and a kinetic model, The Journal of General Physiology, 98(1991) 751-70.
[94] M. Li, T. Kondo, Q.-L. Zhao, F.-J. Li, K. Tanabe, Y. Arai, et al., Apoptosis Induced by Cadmium in Human Lymphoma U937 Cells through Ca2+-calpain and Caspase-Mitochondria- dependent Pathways, Journal of Biological Chemistry, 275(2000) 39702-9.
[95] D. Swandulla, C.M. Armstrong, Calcium channel block by cadmium in chicken sensory neurons, Proceedings of the National Academy of Sciences of the United States of America, 86(1989) 1736-40.
[96] A.K. Pulikkathodi, I. Sarangadharan, Y.-H. Chen, G.-Y. Lee, J.-I. Chyi, G.-B. Lee, et al., Dynamic monitoring of transmembrane potential changes: a study of ion channels using an electrical double layer-gated FET biosensor, Lab on a Chip, (2018).
[97] P.K. Grover, A.G. Cummins, T.J. Price, I.C. Roberts-Thomson, J.E. Hardingham, Circulating tumour cells: the evolving concept and the inadequacy of their enrichment by EpCAM-based methodology for basic and clinical cancer research, Annals of Oncology, 25(2014) 1506-16.
[98] L. Wang, X. Zuo, K. Xie, D. Wei, The Role of CD44 and Cancer Stem Cells, in: G. Papaccio, V. Desiderio (Eds.), Cancer Stem Cells: Methods and Protocols, Springer New York, New York, NY, 2018, pp. 31-42.
[99] L.F. Ferrari, E.V. Khomula, D. Araldi, J.D. Levine, CD44 Signaling Mediates High Molecular Weight Hyaluronan-Induced Antihyperalgesia, The Journal of Neuroscience, 38(2018) 308-21.
[100] A. Pastò, C. Bellio, G. Pilotto, V. Ciminale, M. Silic-Benussi, G. Guzzo, et al., Cancer stem cells from epithelial ovarian cancer patients privilege oxidative phosphorylation, and resist glucose deprivation, Oncotarget, 5(2014) 4305-19.
[101] E. Jameson, C. Alvarez-Tostado, A Study of Blood Serum Proteins by Electrophoresis, The Journal of Physical Chemistry, 43(1939) 1165-72.
[102] A.K. Pulikkathodi, I. Sarangadharan, Y.-H. Chen, G.-Y. Lee, J.-I. Chyi, G.-B. Lee, et al., A Comprehensive Model for Whole Cell Sensing and Transmembrane Potential Measurement Using FET Biosensors, ECS Journal of Solid State Science and Technology, 7(2018) Q3001-Q8.
[103] G. van Niel, G. D'Angelo, G. Raposo, Shedding light on the cell biology of extracellular vesicles, Nature Reviews Molecular Cell Biology, 19(2018) 213.
[104] M. Colombo, G. Raposo, C. Théry, Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles, Annual Review of Cell and Developmental Biology, 30(2014) 255-89.
[105] A. Lo Cicero, P.D. Stahl, G. Raposo, Extracellular vesicles shuffling intercellular messages: for good or for bad, Current Opinion in Cell Biology, 35(2015) 69-77.
[106] M. Marine, P. Liliana, V. Maëva, A. Ramaroson, S. Gilles, M.M. Carmen, Extracellular Vesicles: Mechanisms in Human Health and Disease, Antioxidants & Redox Signaling, 0 null.
[107] M.P. Bebelman, M.J. Smit, D.M. Pegtel, S.R. Baglio, Biogenesis and function of extracellular vesicles in cancer, Pharmacology & Therapeutics, (2018).
[108] R.M. Johnstone, M. Adam, J.R. Hammond, L. Orr, C. Turbide, Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes), Journal of Biological Chemistry, 262(1987) 9412-20.
[109] C. Gardiner, Y.J. Ferreira, R.A. Dragovic, C.W.G. Redman, I.L. Sargent, Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis, Journal of Extracellular Vesicles, 2(2013) 10.3402/jev.v2i0.19671.
[110] F. Mobarrez, J. Antovic, N. Egberg, M. Hansson, G. Jörneskog, K. Hultenby, et al., A multicolor flow cytometric assay for measurement of platelet-derived microparticles, Thrombosis Research, 125(2010) e110-e6.
[111] E. Garza-Licudine, D. Deo, S. Yu, A. Uz-Zaman, W.B. Dunbar, Portable nanoparticle quantization using a resizable nanopore instrument - The IZON qNano™, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology2010, pp. 5736-9.
[112] C. Chen, B.-R. Lin, M.-Y. Hsu, C.-M. Cheng, Paper-based Devices for Isolation and Characterization of Extracellular Vesicles, Journal of Visualized Experiments : JoVE, (2015) 52722.
[113] Z. Andreu, M. Yáñez-Mó, Tetraspanins in Extracellular Vesicle Formation and Function, Frontiers in Immunology, 5(2014) 442.
[114] E. Reátegui, K.E. van der Vos, C.P. Lai, M. Zeinali, N.A. Atai, B. Aldikacti, et al., Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor-specific extracellular vesicles, Nature Communications, 9(2018) 175.
[115] A.L.S. Revenfeld, R. Bæk, M.H. Nielsen, A. Stensballe, K. Varming, M. Jørgensen, Diagnostic and Prognostic Potential of Extracellular Vesicles in Peripheral Blood, Clinical Therapeutics, 36(2014) 830-46.
[116] Z. Andreu, M. Yáñez-Mó, Tetraspanins in Extracellular Vesicle Formation and Function, Frontiers in Immunology, 5(2014) 442.
[117] W.-C. Kao, Y.-W. Chen, C.-H. Chu, W.-H. Chang, S.-C. Shiesh, Y.-L. Wang, et al., Detection of C-reactive protein on an integrated microfluidic system by utilizing field-effect transistors and aptamers, Biomicrofluidics, 11(2017) 044105.
[118] U.T. H., M.H. J., H.J. E., L.A. M., G.M. W., Exosome proteomics reveals transcriptional regulator proteins with potential to mediate downstream pathways, Cancer Science, 105(2014) 1384-92.