研究生: |
鍾武均 Chung wu chun |
---|---|
論文名稱: |
利用不同比例的鎳銅合金觸媒探討其對生長一維碳結構物的影響 The Effect of Variant Copper-Nickel Ratio on The Carbon Filament Growth |
指導教授: |
林鶴南 博士
H. N. Lin 施漢章 博士 H. C. Shih |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 英文 |
論文頁數: | 95 |
中文關鍵詞: | 奈米碳管 、鎳銅合金 、碳纖 、奈米碳纖 |
外文關鍵詞: | carbon nanotube, Ni-Cu alloy, filament, nanofiber |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
運用化學器相沈積法成長奈米碳管需使用金屬為觸媒,其中又以鐵、鈷和鎳三種最常被使用和討論。 然而,研究報導指出,含二種元素所組成的合金觸媒對於控制碳管生長的型態,管徑等具有極佳的效果。 本研究的目的在於使用鎳銅合金來探討成分改變對成長碳管的影響。 選用原因為鎳已知對碳管成長具有活性,而銅則否,藉由加入銅來改變鎳對生長碳管的活性;又二者有相同的結晶結構, 故可排除可能產生介金屬化合物對實驗的影響。 實驗結果顯示,當鎳/銅的成分比例為80/20時,碳管具有極佳的結晶性。 隨著銅含量的增加,碳沈積物也由管狀變成纖維。 若銅含量增加到60%時,將有捲曲的碳纖產生。 這可能是由於形成合金後,觸媒的表面性質和電子組態改變所導致。 從電子組態的觀點而言, 每一個凝態鎳原子含有0.6個電子空缺,每一個凝態銅原子則不含任何的空缺,故合金中的銅含量到達60%時,將不再具有空缺,也意謂著活性的消失。 從表面性質的觀點而言,由於銅的表面自由能小於鎳,使得銅原子在合金中傾向集中於表面,故有可能是這些不具活性的表面銅原子限制了碳析出的區域,而造成碳管型態的改變。
Carbon nanotubes are known to be synthesized by catalytic chemical vapor deposition (CCVD). Catalysts, e.g., Fe, Ni, Co, etc. play an important role in the process of synthesizing. Other elements, e.g., Cu, though showing no effect on the growth, have been used to enhance the catalytic effect of Ni by alloying it with Ni. In this study, microwave plasma enhanced chemical vapor deposition (MPECVD) was used to grow one -dimensional carbon nanostructured materials on silicon. The results showed that the increase of Cu from 20 at% to 40 at% changes the morphology of carbon from tubules to filaments, and the tangled conditions are less observed in this Ni-Cu alloy range. Straight carbon nanotubes were effectively catalyzed at Cu< 40 at%, and interestingly enough the occurrence of spiral carbon nanofibers(~100 nm) at Cu > 60 at%. Therefore, it is not surprising that Ni is a typically effective catalyst for carbon nanotubes. The catalytic effect of Cu-Ni alloys is prominent at Cu<60 at%, where d-band is unfilled and favors the catalysis of carbon nanotubes. Above 60 at% Cu, the filled d-band is less favorable for the growth of one–dimensional carbon nanostructured materials.
Reference(chapter1)
1. S. Iijima and T. Ichihashi, Nature 363, p603(1993)
2. D. S. Bethane, C. H. King, M. S. Driess, G Gorman, R. Savoy, J. Vazquez, and R. Boyers, Nature 363, p605(1993)
3. N. Hamada, S. Sawada, A. Oshiyama, New One-Dimensional Conductors : Graphitic Microtubules, Phys. Rev. Lett. 68, p1581 (1992)
4. R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselus, Electronic structure of chiral graphene tubules, Appl. Phys. Lett. 60, p2204 (1992)
5. 3. J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, Electronic structure of atomically resolved carbon nanotubes, Nature 391, p59 (1998)
6. T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber, Atomic structure and electronic properties of single walled carbon nanotubes, Nature 391, p62 (1998)
7. R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperical College Press, London, 1998.
8.M Ishigami, John Cuming, A. Zettle, S. Chen, A simple method for the
continuous production of carbon nanotubes, Chem. Phys. Lett. 319,
p457 (2000)
9.E. F. Kukovitsky, S. G. L`vov, N. A. Sainov, VLS- growth of carbon
nanotubes from the vapor, Chem. Phys. Lett. 317, p65 (2000)
10.J. M. Jones, R. P. Malcolm, K. M. Thomas and S. H. Bottrell, The
anode deposit formed during the carbon-arc evaporation of graphite for
the synthesis of fullerences and carbon nanotubes, Carbon 34, p231
(1996).
11. T. W. Ebbesen, P. M. Ajayan, H. Hiura and K. Tanigaki, Purification
of nanotubes, Nature 367, p519 (1994).
12. X. Zhao, M. Ohkohchi, M. Wang, S. Iuma, T. Ichihashi and Y. Ando,
Preparation of high-grade carbon nanotubes by hydrogen arc
discharge, Carbon 35, p775 (1997).
13. T. Guo, P. Nikolaev, A. Thess, D. T. Collbert and R. E. Smally,
Catalytic growth of single-walled nanotubes by laser vaporization,
Chem. Phys. Lett. 243, p49 (1995).
14. B. I. Yakobson and R. E. Smally, American Scientist 85, 324(1997)
15. S. H. Tsai, C. W. Chao, C. L. Lee, X. W. Liu, I. N. Lin, and H. C.
Shih, Formation and Field-Emission of Carbon nanofiber Films on
Metallic Nanowire Arrays, Electrochem. Solid-State Lett. 2, p247
(1999)
16. Jung Sang Suh and Jin Seung Lee, Highly ordered two-dimensional
carbon nanotube arrays, Appl. Phys. Lett. 75, p2047 (1999)
17. J. Li, C. Papadopoulos, J. M. Xu, and M. Moskovist, Highly-ordered
carbon nanotube arrays for electronics applications nature, Appl.
Phys.Lett.75, p367 (1999)
18. Tatsuya lwasaki, Taiko Motoi, and Tohru Den, Multiwalled carbon
nanotubes growth in anodic alumina nanoholes, Appl. Phys. Lett. 75,
p2044 (1999)
19. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal,
and P. N. Provencio, Synthesis of Large Arrays of Well-Aligned
Carbon Nanotubes on Glass, Science 282, p1105 (1998)
20. Z. W. Pan, S. S. Xie, B. H. Chang, C. Y. Wang, L. Lu, W. Lin, W. Y.
Zhou, W. Z. Li, L. X. Qian, Very long carbon nanotubes, Science 394,
p634 (1998)
21.W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, L. Lu, B. S. Zou, W. Y.
Zhou, R. A. Zhao, G. Wang, Large-Scale Synthesis of Aligned
Carbon Nanotubes, Science 274, p1701 (1996)
22. Masako Yudasaka , Rie Kikuchi , Takeo Matsui , Yoshimasa Ohki ,
and Susumu Yoshimura, Specific conditions for Ni catalyzed carbon
nanotube growth by chemical vapor deposition, Appl. Phys. Lett. 67,
2477 (1995)
23. Masako Yudasaka , Rie Kikuchi , Yoshimasa Ohki , Etsuro Ota , and
Susumu Yoshimura, Behavior of Ni in carbon nanotube nucleation,
Appl. Phys. Lett. 70, 1817 (1997)
24. Cheol Jin Lee , Dae Woon Kim , and Tae Jae Lee, Synthesis of
uniformly distributed carbon nanotubes on a large area of Si
substrates by thermal chemical vapor deposition, Appl. Phys. Lett.
75,1721 (1999)
25. L.P.Biro, Selective nucleation and growth of carbon nanotubes at the
CoSi2/Si interface, Appl. Phys. Lett. 76, 706 (2000)
26. Carbon nanotubes preparation and properties, Thomas W. Ebbesen,
NEC research institute, Princeton, New Jersey.
27. S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey,
F. Derbyshire, Model of carbon nanotube growth through chemical
vapor deposition, Chem. Phys. Lett. 315, p25 (1999)
28. Cheol Jin Lee, Dae Woon kim, Tae Jae Lee, Young Chul Choi, Young
Soo Park, Young Hee Lee, Won Bong Choi, Nae Sung Lee, Gyeong-
Su Park, Jong Min Kim, Synthesis of align carbon nanotubes using
thermal chemical vapor deposition Chem. Phys. Lett. 312, p461
(1999)
29. De-Chang Li, Liming Dai, Shaoming Huang, Albert W. H. Mau, and
Zhong L.Wang, Structure and growth of aligned carbon nanotube
films by pyrolysis, Chem. Phys. Lett. 316, p349(2000)
30. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S.
Bethuune, M. J. Heben, Storage of hydrogen in single-walled carbon
nanotubes, Nature 386, p377 (1997)
31. G. Binnig, C. F. Quate, and Ch. Gerber, Atomic Force microscope,
Phys. Rev. Lett. 56, p930 (1986)
32. Honglie Dai, Jason H. Hafner, Andrew G. Rinzler, Daniel T. Colbert,
and Richard E. Smalley, Nanotubes as nanoprobes in scanning probe
microscopy, Nature. 384, p147 (1996)
33. E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. C.
Minne, T. Hunt, and C. F. Quate, Terabit-per-square-inch data storage
with the atomic force microscope, Appl. Phys. Lett. 75, p3566 (1999)
34. J. Lefebvre, J. F. Lynch, M. Llaguno, M. Radosavljevic, and A. T.
Johnson, Single-wall carbon nanotube circuits assembled with an
atomic force microscope, Appl. Phys. Lett. 75, p3014 (1999)
35.S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J.
Geerlings, and C. Dekker, Individual single-wall carbon nanotubes as
quantum wires, Nature 386, p474 (1997)
36. M. Bockrath, D. H. Cobden, P. L. McEuen, N. G. Chopra, and A.
Zettl, Single-Electron Transport in Ropes of Carbon Nanotubes,
Science 275, p1922 (1997)
37. S. J. Trans, A. R. M. Verschueuren, and C. Dekker, Room-
temperature transistor based on a single carbon nanotube, Nature 393,
p49 (1998)
38. 蔡尚華, 碳基奈米材料合成及其鑑定, 清華大學, 2000.
Reference(chapter2)
1. J. A. Thornton, "Plasma-Assisted Deposition Processes-Theory,
Mechanism and Application", Thin Solid Films 107, p3 (1983).
2. A. Sherman, " Plasma-Assisted Chemical Vapor Deposition Processes
and Their Semiconductor Applications", Thin Solid Films 113, p135
(1984).
3. J. W. Coburn, "Ion-Enhanced Gas-Surface Chemistry", J. Vac. Sci.
Technol. 21, p557 (1982).
4. J. O. Carlsson, "Processes in Interfacial Zones During Chemical
Vapour Deposition: Aspects of Kinetics. Mechanism, Adhesion and
Substrate Atom Transport", Thin Solid Films 130, p261 (1985).
5. K. E. Spear, Mc. D. Robsion, C. H. J. van den Brekel, G. W. Cullen, J.
M. Blocher, Jr, and P. Rai Choudnany (eds), Proc. 9th Int Conf. on
Chemical Vapor Deposition, Electrochemical Society, Pennington, NJ,
p81, 1984
6. A. Grill, “Cold Plasma in Materials Fabrication from Fundamentals
to Applications”, 1993, P. 11.
7. D. W. Hess, “Plasma-surface Interactions in Plasma-Enhanced
Chemical Vapor Deposition”, Ann. Rev. Sci. 16, p163 (1986)
8. S. Veptek, “Plasma-Induced and Plasma-Assisted Chemical Vapor
Decosition”, Thin Solid Films 130, p211 (1985).
Reference(chapter4)
1. J. H. Hafner, M. J. Bronikowski, B. R. Azamian, P. Nikolaaev, A. G. Rinzler, D. T. Colbert, K. A. Smith, R. E. Smalley, Catalytic growth of single-wall carbon nanotubes from metal particles, Chem. Phys. Lett. 296, p195 (1998).
2. E. Flahaut, A. Govindaraj, A. Peigney, Ch. Lauren, A. Rousset, C.N.R.
Rao, Synthesis of single-walled carbon nanotubes using binary (Fe, Co,
Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid
solutions, Chem. Phys. Lett. 300, p236 (1999).
3. B. Kitiyanan, W. E. Alvarez, J. H. Harwell, D. E. Resasco, Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts, Chem. Phys. Lett. 317, p497 (2000).
4. I. Willems, Z. Konya, J. F. Colomer, G. Van Tendeloo, N. Nagaraju, A.
Fonseca, J. B. Nagy, Control of the outer diameter of thin carbon
nanotubes synthesized by catalytic decomposition of hydrocarbons,
Chem. Phys. Lett. 317, p71 (2000).
5. C. Park and R. T. K. Baker, Carbon deposition on iron-nickel during
interaction with carbon monoxide-hydrogen mixtures, J. Catal. 179,
p361 (1998).
6. C. Park, N. M. Rodriguez and R. T. K. Baker, Carbon deposition on iron-nickel during interaction with ethylene-hydrogen mixtures, J. Catal. 169, p212 (1997).
7.V. B. Fenelonov, A. Yu. Derevyankin, L. G. Okkel, L. B. Avdeeva, V.
I. Zaikovskii, E. M. Moroz, A. N. Salanov, N. A. Rudina, V. A.
Likholobov, and Sh. K. Shaikhutdinov , Structure and texture of
filamentous carbons produced by methane decomposition on Ni and
Ni-Cu catalysts, Carbon 35, p1129 (1997).
8. L. B. Avdeeva, O. V. Goncharova, D.I. Kochubey, V.I. Zaikovskii, L.
M. Plyasova, B.N. Novgorodov, Sh. K. Shaikhutdinov, Coprecipitated
Ni-alumina and Ni-Cu-alumina catalysts of methane decomposition
and carbon deposition, Applied Catalyst A: general 141, p117 (1996).
9. Y. Nishiyama, and Y. Tamai, Effect of hydrogen on carbon deposition
catalyzed by copper-nickel alloys, J. Catal. 45, p1 (1976).
10. M. S. Kim, N. M. Rodriguez, and R. T. K. Baker, The interaction of
hydrocarbons with copper-nickel and nickel in the formation of carbon
filaments, J. Catal. 131, p60 (1991).
11. N. M. Rodriguez, M. S. Kim, and R. T. K. Baker, The role of
interfacial phenomena in the structure of carbon deposits, J. Catal.
140, p16 (1993).
12. Thomas W. Ebbesen, carbon nanotubes preparation and properties,
p114
13.S. Amelinckx, D. Bernaerts, G. Van Tendeloo, J. Van Landuty, A. A.
Lucas, M. Mathot and Ph. Lambin, The morphology, structure and
texture of carbon nanotubes : an electron microscopy study,
Proceedings of the International Winterschool on Electronic
Properties of Novel Materials, p515 (1995)
14.AJ. M. S. Kim, N. M. Rodriguez, and R. T. K. Baker, Deactivation of
copper-nickel catalysts due to changes in surface composition, J.
Catal. 134, p253 (1992).
15.Herbert H. Uhling and R. Winston Revie, Corrosion and Corrosion
control, Third Edition, p81