簡易檢索 / 詳目顯示

研究生: 王心薇
Wang, Hsin-Wei
論文名稱: Synthesis and Phase Behavior of Poly(styrene)-b-poly(L-lactide) (PS-PLLA) Chiral Block Copolymers
指導教授: 何榮銘
Ho, Rong-Ming
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 88
中文關鍵詞: 團聯聚合物PS-PLLA掌性螺旋結構相行為
外文關鍵詞: block copolymers, PS-PLLA, chirality, helical, phase behavior
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The phase behavior for chiral block copolymers (BCPs*), poly(styrene)-b-poly(L-lactide) (PS-PLLA) with the composition range from 0.24 to 0.51 poly(L-lactide) volume fraction (fPLLAv), has been examined to study the effect of chirality on the self-assembly of block copolymers (BCPs). Apart from observing the conventional phases, including sphere (S), hexagonally packed cylinder (HC), gyroid (G) and lamellae (L), a unique phase with three-dimensional hexagonally packed PLLA helices in a PS matrix, a helical phase (H*), was discovered from the self-assembly of PS-rich PS-PLLA at 0.32□ fPLLAv □0.36, whereas no such phase was reported in racemic poly(styrene)-b-poly(D,L-lactide) (PS-PLA) BCPs. The occurrence of the H* was found to be molecular- weight dependent. For PS-PLLA with same composition but smaller molecular weight, gyroid was observed instead. Moreover, phase transitions from the H* to the stable HC and G were found after long-time annealing, suggesting that the H* is a long-lived metastable phase. The slow kinetics associated with the H*□ G or H*□ C relaxation were found to be especially severe in highly entangled systems (i.e., high molecular-weight fractions).
    In-situ small-angle X-ray scattering (SAXS) was utilized to effectively investigate the interaction difference between PS and PLLA blocks and that of PS and PLA blocks. From the discontinuity in the scattering profile, the order-disorder transition temperature (TODT) for each sample can be measured. The corresponding value of Flory-Huggins interaction parameter between PS and PLLA blocks, χPS-PLLA, can be estimated by assuming (χN)ODT as 10.5, where N represents the degree of polymerization. Consequently, the temperature dependence of the χPS-PLLA can be determined. Accordingly, the χPS-PLLA value was estimated higher than that of racemic PS-PLA (χPS-PLA), indicating that the incompatibility between PS and chiral PLLA blocks is higher than that between PS and racemic PLA blocks. We propose that the formation of this novel phase is attributed to intramolecular chiral effect and intermolecular chiral interaction. The enthalpy penalty of forming larger interface between the two incompatible blocks is compromised by the formation of partially ordered state.
    Also, phase behavior of PS/PS-PLLA blends was examined in order to gain a deeper understanding of the chiral effect on BCP self-assembly and the origins for H* formation. Homopolymers with three different molecular weights were blended with lamellae-forming PS-PLLA to prepare binary mixture with fPLLAv~0.34. When the molecular weight of PS exceeds that of the PS block in BCPs*, no phase transition occurred due to localized solubilization as expected. However, with shorter PS chains, both C and H* can be observed under the same fPLLAv, indicating that the solubilization mechanism of PS in PS-PLLA might justify the chiral effect on BCP self-assembly.


    Abstract Content List of Tables and Schemes List of Figures Chapter 1 Introduction 1.1 Living Polymerization 1.1.1 Synthesis of Block Copolymers by Ionic Polymerization (i) Anionic Polymerization (ii) Cationic Polymerization 1.1.2 Synthesis of Block Copolymers by Controlled Radical Polymerization (i) Atomic Transfer Radical Polymerization (ATRP) (ii) Nitroxy-Mediated Radical Polymerization (NMP) (iii) Reversible Addition-Fragmentation Termination (RAFT) 1.1.3 Ring-Opening Polymerization 1.2 Self-Assembly of Block Copolymers 1.2.1 General Aspects 1.2.2 Conformational Symmetric coil-coil block copolymers 1.2.3 Conformational Asymmetry /semiflexible-flexible Block Copolymers 1.2.4 Phase behavior of Rod-Coil Diblock Copolymers 1.3 Metastability of BCP self-assembled phase 1.4 Self-Assembly of Chiral Block Copolymers (BCPs*) 1.5 Interaction Parameter and Order-Disorder Transition Temperature 1.5.1 Calculation of the Flory-Huggins Interaction Parameter 1.5.2 Determine TODT by Rheological Analysis 1.5.3 Determine TODT from Small Angle X-ray Scattering (SAXS) Chapter 2 Objectives Chapter 3 Materials and Experimental Methods 3.1 Synthetic Methods 3.1.1 Materials 3.1.2 Preparation of Double-Headed Initiator (DHI) 3.1.3 Synthesis of Hydroxyl-terminated Polystyrene (PS-OH) 3.1.4 Copolymerization of PS-PLLA 3.1.5 Nuclear Magnetic Resonance Spectroscopy (NMR) 3.1.6 Gel Permeation Chromatography (GPC) 3.2 Thermal Properties Measurement 3.2.1 Thermogravimetric Analysis (TGA) 3.2.2 Differential Scanning Calorimetry (DSC) 3.3 Morphological Analysis 3.3.1 Simultaneous Small-Angle X-ray Scattering (SAXS) 3.3.2 Transmission Electron Microscopy (TEM) 3.4 Blending Methods Chapter 4 Results and Discussion 4.1 Synthesis of Chiral PS-PLLA BCPs* 4.1.1 Double-Headed Initiator (DHI) 4.1.2 Hydroxyl-terminated Polystyrene (PS-OH) 4.1.3 Copolymerization of PS-PLLA 4.2 Thermal Behavior 4.2.1 Thermogravimetric Analysis (TGA) 4.2.2 Thermal properties of BCPs* 4.3 Phase Behavior of PS-PLLA 4.3.1 Helical Phase (H*) Identification 4.3.2 Phase Behavior of PS-PLLA 4.3.3 Metastability of Helical Phase (H*) 4.4 Chiral Interaction 4.5 Phase Behavior of PS/PS-PLLA Blends Chapter 5 Conclusions Chapter 6 References

    1. Cowie, J. M. G. Polymer Chemistry & Physics of Modern Materials, 2nd Ed., Nelson Thornes, p.95, 1991
    2. Schmidt, S.C.; Hillmyer, M. A. Macromolecules 1999, 32, 4794
    3. Hadjichristidis, N.; Pitsikalis, M.; Iatrou, H. Synthesis of Block Copolymers, Block Copolymer I Vol. 189, Springer, pp1-124, 2005
    4. Pitsikalis, M.; Siakali-Kioulafa, E.; Hadjichristidis, N. Macromolecules 2000, 33, 5460
    5. Verdonck, B.; Goethals, E. J.; Du Prez, F. E. Macromol Chem Phys 2003, 204, 2090
    6. Yang, R.; Wang, Y.; Wang, X.; He, W.; Pan, C. Eur Polym J 2003, 39, 2029
    7. Benoit, D.; Harth, E.; Fox, P.; Waymouth, R. M.; Hawker, C.J. Macromolecules 2000, 33, 363
    8. McCormick, C. J.; Lowe, A. B. Acc Chem Res 2004, 37, 312
    9. Odian, G. Principles of Polymerization, MaGraw-Hill Book Company, 1970
    10.Braun, D. Polymer Synthesis: theory and Practice: fundamentals, methods, Experiments, Springer, 4th Ed., 2005
    11.Leibler, L. Macromolecules 1980, 13, 1602
    12.Matsen, M. W.; Schick, M. Phys. Rev. Lett. 1994, 18, 2660
    13.Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 1091
    14.Khandpur, A. K.; Foerster, S.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W.; Almdal, K., Mortensen, K. Macromolecules 1995, 28, 8796
    15.Bates, F. S.; Schulz, M. F.; Khandpur, A. K.; Forster, S.; Rosedale, J. H.; Almdal, K.; Mortensen, K. Faraday Discuss. Chem. Soc. 1994, 98, 7
    16.Matsen, M. W.; Bates, F. S. J. Polym. Sci. Part B, 1996, 35, 945
    17.Mai, S. M.; Fairclough, J. P. A.; Terrill, N. J.; Turner, S. C.; Hamley, I. W.; Matsen, M. W.; Ryan, A. J.; Booth, C. Macromolecules, 1998, 31, 8110
    18.Vavasour, J. D.; Whitmore, M. D. Macromolecules 1993, 26, 7070; Macromolecules 1996, 29, 5244.
    19.Hamley, I. W.; Podneks, V. E. Macromolecules 1997, 30, 3701.
    20.Semenov, A. N. Sov. Phys. JETP, 1985, 61, 733.
    21.Matsen, M.S. J. Chem. Phys. 1996, 104, 7758
    22.Hong, K.M.; Noolandi, J.; Polym. Commun. 1984, 25,265
    23.Prasman, E.; Thomas, E. L. J. Polym Sci Part B Polym Phys 1998, 36, 1625
    24.Keller, A.; Pedemonte, E.; Willmouth, F. M.; Nature 1970, 225, 538
    25.Harada, T.; Bates, F. S.; Lodge, T. P. Macromolecules 2003, 36, 5440
    26.Fredrickson, G. H.; Helfand, E.; J. Chem. Phys. 1987, 87, 697
    27.Leibler, L.; Benoit, H.; Polymer 1981, 22, 195
    28.Chen, J. T.; Thomas, E. L.; Ober, C. K.; Hwang, S. S. Macromolecules 1995, 28, 1688
    29.Pryamitsyn, V.; Ganesan, V. J. Chem. Phys. 2004, 120, 5824
    30.Hajduk, D. A., Takenouchi, H., Hillmyer, M. A., Bates, F. S. Macromolecules, 1997, 30, 3788
    31.R.-M. Ho, Y.-W. Chiang, C.-C. Tsai, C.-C. Lin, B.-T. Ko, B.-H. Huang, J. Am. Chem. Soc. 2004, 126, 2704.
    32.Kowalski, A.; Duda, A.; Penczek, S. Macromolecules 2000, 33, 7359
    33.Y.-W. Chiang, R.-M. Ho, B.-T. Ko, C.-C. Lin, Angew. Chem. Int. Ed. 2005, 44, 7969
    34.R.-M. Ho, C.-K. Chen, Y.-W. Chiang, B.-T. Ko, C.-C. Lin, Adv. Mater. 2006, 18, 2355.
    35.Li, S. J. Biomed. Mater. Res. 1999, 48, 342-353.
    36.Rosedale, J. H., Bates, F. S., Macromolecules 1990, 23, 2329
    37.Mai, S. M.; Fairclough, J. P. A.; Hamley, I. W.; Matsen, M. W.; Denny, R. C.; Liao, B.-X.; Booth, C.; Ryan, A. J. Macromolecules 1996, 29, 6212
    38.Sakamoto, N.; Hashimoto, T. Macromolecules, 1995, 28, 6825
    39.Yamaguchi, D,; Hasegawa, H.; Hashimoto, T Macromolecules, 2001, 34, 6506
    40.Matyjaszewski, K.; Xia, J. Chem. Rev. 2001, 101, 2921
    41.Tao, L.; Pan, C.-Y. et al. Polymer 2003, 44, 1013
    42.Ho, R. M.; Chiang, Y. W.; Chen, C. K.; Wang, H. W. et al. J. Am. Chem. Soc. 2009, 131, 18533
    43.Chiang, Y.-W. PhD Thesis, National Tsing-Hua University, 2008
    44.Zalusky, A. S.; Olayo-Valles, R.; Wolf, J. H.; Hillmyer, M. A. J. Am. Chem. Soc. 2002, 124 , 12761
    45.Joziasse, C. A. P. et al. Macromol. Chem. Phys. 1996, 197, 2219
    46.Matsen, M.S. J. Polym. Sci. Part B, 1996, 35, 945
    47.Grosberg, A. Y.; Khokhlov, A. R. Statistical Physics of Macromolecules; AIP: New York, 1994; pp 289-336
    48.Ou-Yang, Z.-C. ; Liu, J. Phys. Rev. Lett. 1990, 65, 1679
    49.Nandi, N.; Bagchi, B. J. Am. Chem. Soc. 1996, 118, 11208
    50.Hashimoto, T.; Tanaka, H.; Hasegawa, H. Macromolecules 1990, 23, 4378

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE