研究生: |
王心薇 Wang, Hsin-Wei |
---|---|
論文名稱: |
Synthesis and Phase Behavior of Poly(styrene)-b-poly(L-lactide) (PS-PLLA) Chiral Block Copolymers |
指導教授: |
何榮銘
Ho, Rong-Ming |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 88 |
中文關鍵詞: | 團聯聚合物 、PS-PLLA 、掌性 、螺旋結構 、相行為 |
外文關鍵詞: | block copolymers, PS-PLLA, chirality, helical, phase behavior |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The phase behavior for chiral block copolymers (BCPs*), poly(styrene)-b-poly(L-lactide) (PS-PLLA) with the composition range from 0.24 to 0.51 poly(L-lactide) volume fraction (fPLLAv), has been examined to study the effect of chirality on the self-assembly of block copolymers (BCPs). Apart from observing the conventional phases, including sphere (S), hexagonally packed cylinder (HC), gyroid (G) and lamellae (L), a unique phase with three-dimensional hexagonally packed PLLA helices in a PS matrix, a helical phase (H*), was discovered from the self-assembly of PS-rich PS-PLLA at 0.32□ fPLLAv □0.36, whereas no such phase was reported in racemic poly(styrene)-b-poly(D,L-lactide) (PS-PLA) BCPs. The occurrence of the H* was found to be molecular- weight dependent. For PS-PLLA with same composition but smaller molecular weight, gyroid was observed instead. Moreover, phase transitions from the H* to the stable HC and G were found after long-time annealing, suggesting that the H* is a long-lived metastable phase. The slow kinetics associated with the H*□ G or H*□ C relaxation were found to be especially severe in highly entangled systems (i.e., high molecular-weight fractions).
In-situ small-angle X-ray scattering (SAXS) was utilized to effectively investigate the interaction difference between PS and PLLA blocks and that of PS and PLA blocks. From the discontinuity in the scattering profile, the order-disorder transition temperature (TODT) for each sample can be measured. The corresponding value of Flory-Huggins interaction parameter between PS and PLLA blocks, χPS-PLLA, can be estimated by assuming (χN)ODT as 10.5, where N represents the degree of polymerization. Consequently, the temperature dependence of the χPS-PLLA can be determined. Accordingly, the χPS-PLLA value was estimated higher than that of racemic PS-PLA (χPS-PLA), indicating that the incompatibility between PS and chiral PLLA blocks is higher than that between PS and racemic PLA blocks. We propose that the formation of this novel phase is attributed to intramolecular chiral effect and intermolecular chiral interaction. The enthalpy penalty of forming larger interface between the two incompatible blocks is compromised by the formation of partially ordered state.
Also, phase behavior of PS/PS-PLLA blends was examined in order to gain a deeper understanding of the chiral effect on BCP self-assembly and the origins for H* formation. Homopolymers with three different molecular weights were blended with lamellae-forming PS-PLLA to prepare binary mixture with fPLLAv~0.34. When the molecular weight of PS exceeds that of the PS block in BCPs*, no phase transition occurred due to localized solubilization as expected. However, with shorter PS chains, both C and H* can be observed under the same fPLLAv, indicating that the solubilization mechanism of PS in PS-PLLA might justify the chiral effect on BCP self-assembly.
1. Cowie, J. M. G. Polymer Chemistry & Physics of Modern Materials, 2nd Ed., Nelson Thornes, p.95, 1991
2. Schmidt, S.C.; Hillmyer, M. A. Macromolecules 1999, 32, 4794
3. Hadjichristidis, N.; Pitsikalis, M.; Iatrou, H. Synthesis of Block Copolymers, Block Copolymer I Vol. 189, Springer, pp1-124, 2005
4. Pitsikalis, M.; Siakali-Kioulafa, E.; Hadjichristidis, N. Macromolecules 2000, 33, 5460
5. Verdonck, B.; Goethals, E. J.; Du Prez, F. E. Macromol Chem Phys 2003, 204, 2090
6. Yang, R.; Wang, Y.; Wang, X.; He, W.; Pan, C. Eur Polym J 2003, 39, 2029
7. Benoit, D.; Harth, E.; Fox, P.; Waymouth, R. M.; Hawker, C.J. Macromolecules 2000, 33, 363
8. McCormick, C. J.; Lowe, A. B. Acc Chem Res 2004, 37, 312
9. Odian, G. Principles of Polymerization, MaGraw-Hill Book Company, 1970
10.Braun, D. Polymer Synthesis: theory and Practice: fundamentals, methods, Experiments, Springer, 4th Ed., 2005
11.Leibler, L. Macromolecules 1980, 13, 1602
12.Matsen, M. W.; Schick, M. Phys. Rev. Lett. 1994, 18, 2660
13.Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 1091
14.Khandpur, A. K.; Foerster, S.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W.; Almdal, K., Mortensen, K. Macromolecules 1995, 28, 8796
15.Bates, F. S.; Schulz, M. F.; Khandpur, A. K.; Forster, S.; Rosedale, J. H.; Almdal, K.; Mortensen, K. Faraday Discuss. Chem. Soc. 1994, 98, 7
16.Matsen, M. W.; Bates, F. S. J. Polym. Sci. Part B, 1996, 35, 945
17.Mai, S. M.; Fairclough, J. P. A.; Terrill, N. J.; Turner, S. C.; Hamley, I. W.; Matsen, M. W.; Ryan, A. J.; Booth, C. Macromolecules, 1998, 31, 8110
18.Vavasour, J. D.; Whitmore, M. D. Macromolecules 1993, 26, 7070; Macromolecules 1996, 29, 5244.
19.Hamley, I. W.; Podneks, V. E. Macromolecules 1997, 30, 3701.
20.Semenov, A. N. Sov. Phys. JETP, 1985, 61, 733.
21.Matsen, M.S. J. Chem. Phys. 1996, 104, 7758
22.Hong, K.M.; Noolandi, J.; Polym. Commun. 1984, 25,265
23.Prasman, E.; Thomas, E. L. J. Polym Sci Part B Polym Phys 1998, 36, 1625
24.Keller, A.; Pedemonte, E.; Willmouth, F. M.; Nature 1970, 225, 538
25.Harada, T.; Bates, F. S.; Lodge, T. P. Macromolecules 2003, 36, 5440
26.Fredrickson, G. H.; Helfand, E.; J. Chem. Phys. 1987, 87, 697
27.Leibler, L.; Benoit, H.; Polymer 1981, 22, 195
28.Chen, J. T.; Thomas, E. L.; Ober, C. K.; Hwang, S. S. Macromolecules 1995, 28, 1688
29.Pryamitsyn, V.; Ganesan, V. J. Chem. Phys. 2004, 120, 5824
30.Hajduk, D. A., Takenouchi, H., Hillmyer, M. A., Bates, F. S. Macromolecules, 1997, 30, 3788
31.R.-M. Ho, Y.-W. Chiang, C.-C. Tsai, C.-C. Lin, B.-T. Ko, B.-H. Huang, J. Am. Chem. Soc. 2004, 126, 2704.
32.Kowalski, A.; Duda, A.; Penczek, S. Macromolecules 2000, 33, 7359
33.Y.-W. Chiang, R.-M. Ho, B.-T. Ko, C.-C. Lin, Angew. Chem. Int. Ed. 2005, 44, 7969
34.R.-M. Ho, C.-K. Chen, Y.-W. Chiang, B.-T. Ko, C.-C. Lin, Adv. Mater. 2006, 18, 2355.
35.Li, S. J. Biomed. Mater. Res. 1999, 48, 342-353.
36.Rosedale, J. H., Bates, F. S., Macromolecules 1990, 23, 2329
37.Mai, S. M.; Fairclough, J. P. A.; Hamley, I. W.; Matsen, M. W.; Denny, R. C.; Liao, B.-X.; Booth, C.; Ryan, A. J. Macromolecules 1996, 29, 6212
38.Sakamoto, N.; Hashimoto, T. Macromolecules, 1995, 28, 6825
39.Yamaguchi, D,; Hasegawa, H.; Hashimoto, T Macromolecules, 2001, 34, 6506
40.Matyjaszewski, K.; Xia, J. Chem. Rev. 2001, 101, 2921
41.Tao, L.; Pan, C.-Y. et al. Polymer 2003, 44, 1013
42.Ho, R. M.; Chiang, Y. W.; Chen, C. K.; Wang, H. W. et al. J. Am. Chem. Soc. 2009, 131, 18533
43.Chiang, Y.-W. PhD Thesis, National Tsing-Hua University, 2008
44.Zalusky, A. S.; Olayo-Valles, R.; Wolf, J. H.; Hillmyer, M. A. J. Am. Chem. Soc. 2002, 124 , 12761
45.Joziasse, C. A. P. et al. Macromol. Chem. Phys. 1996, 197, 2219
46.Matsen, M.S. J. Polym. Sci. Part B, 1996, 35, 945
47.Grosberg, A. Y.; Khokhlov, A. R. Statistical Physics of Macromolecules; AIP: New York, 1994; pp 289-336
48.Ou-Yang, Z.-C. ; Liu, J. Phys. Rev. Lett. 1990, 65, 1679
49.Nandi, N.; Bagchi, B. J. Am. Chem. Soc. 1996, 118, 11208
50.Hashimoto, T.; Tanaka, H.; Hasegawa, H. Macromolecules 1990, 23, 4378