研究生: |
沈柍君 Shen, Yang-Chun |
---|---|
論文名稱: |
三維間葉幹細胞球體用於角膜上皮損傷治療及作用機制探討 Three-dimensional Mesenchymal Stem Cell Spheroids for Corneal Epithelial Wound Repair |
指導教授: |
黃玠誠
Huang, Chieh-Cheng |
口試委員: |
陳宏吉
Chen, Hung-Chi 陳盈潔 Chen, Ying-Chieh 李亦宸 Li, Yi-Chen 李亦淇 Lee, I-Chi |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 生物醫學工程研究所 Institute of Biomedical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 角膜上皮缺損 、傷口修復 、細胞療法 、三維幹細胞球體 |
外文關鍵詞: | Corneal epithelial wound repair, Three-dimensional stem cell spheroid |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
眼睛堪比精密的光學儀器,而眼球最外層結構—角膜,是個複雜且具多方功能的組織。當眼球接觸化學物質或灼熱物質時,角膜第一道屏障上皮層會直接與外部環境接觸,造成角膜病變。為了保護及維持角膜的完整性與透明度,人類角膜上皮細胞(human corneal epithelial cells, hCEC)須不斷增生、修復;而支持上皮細胞能夠做為修復的供給來源,則是來自角膜周圍的輪部幹細胞(limbal stem cell)。然而,一旦當角膜緣輪部受到毀損,再生的角膜上皮細胞便無法完整覆蓋傷口,導致部分結膜表皮細胞入侵,伴隨血管新生及反覆的上皮缺損,嚴重則角膜全部血管化;最重則角膜溶解、穿孔。由於目前在臨床上以清創手術與羊膜移植為主,但仍無法完全治癒角膜表面,而間葉幹細胞於再生醫學中已成為細胞治療的有前途的工具。先前研究已證實以間葉幹細胞及內皮細胞製備的三維幹細胞球體具有更高含量的營養因子。故本篇研究期望開發出以間葉幹細胞球體作為載體,藉由載體內的生長因子及細胞因子釋放達到治療角膜上皮的病變。我們成功製備三維間葉幹細胞球體,並與傳統二維幹細胞培養進行比較,評估其治療效益。在體外實驗中,以免疫螢光染色及real-time PCR證明三維幹細胞球體具有較完整的細胞外基質及生長因子與細胞因子,此外,更進一步以模擬體內發炎環境,三維幹細胞球之生長因子、抗血管新生、抗發炎、免疫調節及基質重塑因子含量不減反增,同時,這些因子能夠提升角膜上皮細胞增生及遷移能力,並以細胞存活率分析及傷口癒合試驗證明之。最後,三維幹細胞球之條件培養基能夠預防巨噬細胞及化成發炎細胞及化成發炎細胞。綜合以上結果,三維幹細胞球具有促角膜上皮細胞增殖及遷移作用及抗發炎的潛力,期望未來可以將三維幹細胞球應用於角膜損傷的細胞療法,提升臨床治療效果。
The eye is a sophisticated optical instrument. Cornea, the outermost structure of the eyeball, is complex and multi-functional. As the eye contact with chemicals, the epithelial layer of the first barrier of the cornea will directly contact the external environment, causing corneal dystrophy. However, in order to protect and maintain the integrity and transparency of the cornea, human corneal epithelial cells (hCECs) must continue to proliferate that supplied from the stem cells around the cornea (limbal stem cell). Once the limbus is damaged, the regenerated corneal epithelial cells cannot completely cover the wound, resulting in angiogenesis and persistent epithelial defects. Clinically, debridement surgery and amniotic membrane transplantation cannot be cured, thus, mesenchymal stem cells in regenerative medicine is a promising tool for cell therapy. Previous studies have confirmed that three-dimensional stem cell spheroid prepared from mesenchymal stem cells and endothelial cells have higher levels of trophic factors. Therefore, in this work, we supposed to develop mesenchymal stem cell spheroids through the release of growth factors and cytokines to treat corneal epithelial repair. In vitro study reveal that the three-dimensional stem cell spheroids have a relatively complete extracellular matrix, growth factors and cytokines. In addition, the growth factors, anti-angiogenesis, anti-inflammation, immunomodulation and matrix remodeling factors was increased when the three-dimensional stem cell spheroids under the inflammatory environment. These factors also can enhance the proliferation and migration of corneal epithelial cells, which is proved by cell survival rate analysis and wound healing tests. Finally, the conditioned medium of the three-dimensional stem cell spheroids can prevent macrophages transformed into inflammatory cells. These experimental data highlight the fabrication of 3D stem cell spheroids may represent a novel therapeutic approach of stem cell based therapy for corneal epithelial defect.
1. Niederkorn, J.Y., Cornea: Window to Ocular Immunology. Curr Immunol Rev, 2011. 7(3): p. 328-335.
2. Eghrari, A.O., S.A. Riazuddin, and J.D. Gottsch, Chapter Two - Overview of the Cornea: Structure, Function, and Development, in Progress in Molecular Biology and Translational Science, J.F. Hejtmancik and J.M. Nickerson, Editors. 2015, Academic Press. p. 7-23.
3. Ghezzi, C.E., J. Rnjak-Kovacina, and D.L. Kaplan, Corneal tissue engineering: recent advances and future perspectives. Tissue Eng Part B Rev, 2015. 21(3): p. 278-87.
4. Chen, S., et al., Advances in culture, expansion and mechanistic studies of corneal endothelial cells: a systematic review. Journal of Biomedical Science, 2019. 26(1): p. 2.
5. Patel, S.P. and M.D. Parker, SLC4A11 and the pathophysiology of congenital hereditary endothelial dystrophy. BioMed research international, 2015. 2015.
6. Cintron, C., H. Covington, and C.L. Kublin, Morphogenesis of rabbit corneal stroma. Investigative ophthalmology & visual science, 1983. 24(5): p. 543-556.
7. Meek, K.M., Corneal collagen-its role in maintaining corneal shape and transparency. Biophysical reviews, 2009. 1(2): p. 83-93.
8. Matthyssen, S., et al., Corneal regeneration: A review of stromal replacements. Acta Biomaterialia, 2018. 69: p. 31-41.
9. Oliveira-Soto, L. and N. Efron, Morphology of Corneal Nerves Using Confocal Microscopy. Cornea, 2001. 20(4): p. 374-384.
10. Eghrari, A.O., S.A. Riazuddin, and J.D. Gottsch, Overview of the Cornea: Structure, Function, and Development. Prog Mol Biol Transl Sci, 2015. 134: p. 7-23.
11. Ehlers, N. and J. Hjortdal, The Cornea: Epithelium and Stroma, in Advances in Organ Biology, J. Fischbarg, Editor. 2005, Elsevier. p. 83-111.
12. Lagali, N., Corneal Stromal Regeneration: Current Status and Future Therapeutic Potential. Current Eye Research, 2020. 45(3): p. 278-290.
13. DelMonte, D.W. and T. Kim, Anatomy and physiology of the cornea. Journal of Cataract & Refractive Surgery, 2011. 37(3): p. 588-598.
14. Farjo, A.A., et al., Corneal anatomy, physiology, and wound healing. Ophthalmology E-Book, 2018: p. 155.
15. Oie, Y. and K. Nishida, Regenerative medicine for the cornea. BioMed research international, 2013. 2013.
16. Nowell, C.S. and F. Radtke, Corneal epithelial stem cells and their niche at a glance. J Cell Sci, 2017. 130(6): p. 1021-1025.
17. Secker, G.A. and J.T. Daniels, Limbal epithelial stem cells of the cornea. African Scientist, 2015. 16(3): p. 205-223.
18. Wirostko, B., et al., Novel Therapy to Treat Corneal Epithelial Defects: A Hypothesis with Growth Hormone. Ocul Surf, 2015. 13(3): p. 204-212 e1.
19. Quesada, J.M.-A., J.M. Lloves, and D.V. Delgado, Ocular chemical burns in the workplace: Epidemiological characteristics. Burns, 2020. 46(5): p. 1212-1218.
20. Dua, H.S., et al., Chemical eye injury: pathophysiology, assessment and management. Eye (Lond), 2020. 34(11): p. 2001-2019.
21. Eslani, M., et al., The Ocular Surface Chemical Burns. Journal of Ophthalmology, 2014. 2014: p. 196827.
22. DUA, H.S., A.J. KING, and A. JOSEPH, A new classification of ocular surface burns. British Journal of Ophthalmology, 2001. 85(11): p. 1379-1383.
23. McCulley, J., The cornea: scientific foundation and clinical practice. 1987, Boston: Little, Brown.
24. Singh, P., et al., Ocular chemical injuries and their management. Oman journal of ophthalmology, 2013. 6(2): p. 83-86.
25. Paterson, C.A. and R.R. Pfister, Intraocular Pressure Changes After Alkali Burns. Archives of Ophthalmology, 1974. 91(3): p. 211-218.
26. Liu, C.-Y. and W.W.-Y. Kao, Chapter Five - Corneal Epithelial Wound Healing, in Progress in Molecular Biology and Translational Science, J.F. Hejtmancik and J.M. Nickerson, Editors. 2015, Academic Press. p. 61-71.
27. Ljubimov, A.V. and M. Saghizadeh, Progress in corneal wound healing. Progress in retinal and eye research, 2015. 49: p. 17-45.
28. Chaurasia, S.S., et al., Nanomedicine approaches for corneal diseases. Journal of functional biomaterials, 2015. 6(2): p. 277-298.
29. Rubin, J.S., et al., Purification and characterization of a newly identified growth factor specific for epithelial cells. Proceedings of the National Academy of Sciences, 1989. 86(3): p. 802-806.
30. Sotozono, C., et al., Paracrine role of keratinocyte growth factor in rabbit corneal epithelial cell growth. Experimental eye research, 1994. 59(4): p. 385-392.
31. Wilson, S.E., et al., Hepatocyte growth factor, keratinocyte growth factor, their receptors, fibroblast growth factor receptor-2, and the cells of the cornea. Investigative Ophthalmology & Visual Science, 1993. 34(8): p. 2544-2561.
32. Li, D.Q. and S.C. Tseng, Differential regulation of keratinocyte growth factor and hepatocyte growth factor/scatter factor by different cytokines in human corneal and limbal fibroblasts. Journal of cellular physiology, 1997. 172(3): p. 361-372.
33. Miyagi, H., et al., The role of hepatocyte growth factor in corneal wound healing. Experimental eye research, 2018. 166: p. 49-55.
34. Wilson, S.E., et al., Expression of HGF, KGF, EGF and Receptor Messenger RNAs Following Corneal Epithelial Wounding. Experimental Eye Research, 1999. 68(4): p. 377-397.
35. Wilson, S.E., Q. Liang, and W.J. Kim, Lacrimal gland HGF, KGF, and EGF mRNA levels increase after corneal epithelial wounding. Investigative ophthalmology & visual science, 1999. 40(10): p. 2185-2190.
36. Ahmad, S., F. Figueiredo, and M. Lako, Corneal epithelial stem cells: characterization, culture and transplantation. Regenerative Medicine, 2006. 1(1): p. 29-44.
37. Pastor, J.C. and M. Calonge, Epidermal growth factor and corneal wound healing. A multicenter study. Cornea, 1992. 11(4): p. 311-314.
38. Schultz, G., et al., EFFECTS OF GROWTH FACTORS ON CORNEAL WOUND HEALING. Acta Ophthalmologica, 1992. 70(S202): p. 60-66.
39. Candar, T., et al., Galectin-3, IL-1A, IL-6, and EGF Levels in Corneal Epithelium of Patients With Recurrent Corneal Erosion Syndrome. Cornea, 2020. 39(11): p. 1354-1358.
40. Zhang, Y., M. Islam, and R.A. Akhtar, Effects of atrial natriuretic peptide and sodium nitroprusside on epidermal growth factor-stimulated wound repair in rabbit corneal epithelial cells. Current Eye Research, 2000. 21(3): p. 748-756.
41. Yin, J., et al., Wound-induced ATP release and EGF receptor activation in epithelial cells. Journal of Cell Science, 2007. 120(5): p. 815-825.
42. Tolino, M.A., E.R. Block, and J.K. Klarlund, Brief treatment with heparin-binding EGF-like growth factor, but not with EGF, is sufficient to accelerate epithelial wound healing. Biochimica et Biophysica Acta (BBA) - General Subjects, 2011. 1810(9): p. 875-878.
43. Dao, D.T., et al., Heparin-Binding Epidermal Growth Factor–Like Growth Factor as a Critical Mediator of Tissue Repair and Regeneration. The American Journal of Pathology, 2018. 188(11): p. 2446-2456.
44. Pollak, M., Insulin and insulin-like growth factor signalling in neoplasia. Nature Reviews Cancer, 2008. 8(12): p. 915-928.
45. Werner, H., D. Weinstein, and I. Bentov, Similarities and differences between insulin and IGF-I: structures, receptors, and signalling pathways. Archives of physiology and biochemistry, 2008. 114(1): p. 17-22.
46. Li, D.Q. and S.C. Tseng, Three patterns of cytokine expression potentially involved in epithelial‐fibroblast interactions of human ocular surface. Journal of cellular physiology, 1995. 163(1): p. 61-79.
47. Lee, H.K., et al., Insulin-like growth factor-1 induces migration and expression of laminin-5 in cultured human corneal epithelial cells. Investigative ophthalmology & visual science, 2006. 47(3): p. 873-882.
48. Nakamura, M., et al., Combined effects of substance P and insulin-like growth factor-1 on corneal epithelial wound closure of rabbit in vivo. Current eye research, 1997. 16(3): p. 275-278.
49. Nishida, T., et al., Synergistic effects of substance P with insulin‐like growth factor‐1 on epithelial migration of the cornea. Journal of cellular physiology, 1996. 169(1): p. 159-166.
50. Nishida, T., et al., Persistent epithelial defects due to neurotrophic keratopathy treated with a substance p-derived peptide and insulin-like growth factor 1. Japanese journal of ophthalmology, 2007. 51(6): p. 442-447.
51. Yamada, N., et al., Open clinical study of eye-drops containing tetrapeptides derived from substance P and insulin-like growth factor-1 for treatment of persistent corneal epithelial defects associated with neurotrophic keratopathy. British Journal of Ophthalmology, 2008. 92(7): p. 896-900.
52. Rocha, E.M., et al., Identification of insulin in the tear film and insulin receptor and IGF-I receptor on the human ocular surface. Investigative ophthalmology & visual science, 2002. 43(4): p. 963-967.
53. Stuard, W.L., R. Titone, and D.M. Robertson, The IGF/Insulin-IGFBP Axis in Corneal Development, Wound Healing, and Disease. Front Endocrinol (Lausanne), 2020. 11: p. 24.
54. Lyu, J., K.-S. Lee, and C.-K. Joo, Transactivation of EGFR mediates insulin-stimulated ERK1/2 activation and enhanced cell migration in human corneal epithelial cells. Mol Vis, 2006. 12: p. 1403-1410.
55. Zagon, I.S., J.W. Sassani, and P.J. McLaughlin, Insulin treatment ameliorates impaired corneal reepithelialization in diabetic rats. Diabetes, 2006. 55(4): p. 1141-1147.
56. Zagon, I.S., et al., Use of topical insulin to normalize corneal epithelial healing in diabetes mellitus. Archives of Ophthalmology, 2007. 125(8): p. 1082-1088.
57. Kamiyama, K., et al., Effects of PDGF on the migration of rabbit corneal fibroblasts and epithelial cells. Cornea, 1998. 17(3): p. 315-325.
58. Imanishi, J., et al., Growth factors: importance in wound healing and maintenance of transparency of the cornea. Progress in retinal and eye research, 2000. 19(1): p. 113-129.
59. Vesaluoma, M., et al., Platelet-derived growth factor-BB (PDGF-BB) in tear fluid: a potential modulator of corneal wound healing following photorefractive keratectomy. Current eye research, 1997. 16(8): p. 825-831.
60. Vij, N., et al., PDGF-driven proliferation, migration, and IL8 chemokine secretion in human corneal fibroblasts involve JAK2-STAT3 signaling pathway. Molecular vision, 2008. 14: p. 1020.
61. Roberts, A.B., The ever-increasing complexity of TGF-β signaling. Cytokine and Growth Factor Reviews, 2002. 1(13): p. 3-5.
62. Nishida, K., et al., Immunohistochemical localization of transforming growth factor-beta 1,-beta 2, and-beta 3 latency-associated peptide in human cornea. Investigative ophthalmology & visual science, 1994. 35(8): p. 3289-3294.
63. Nishida, K., et al., Transforming growth factor-β1, -β2 and -β3 mRNA expression in human cornea. Current Eye Research, 1995. 14(3): p. 235-241.
64. Joyce, N.C. and J.D. Zieske, Transforming growth factor-beta receptor expression in human cornea. Investigative ophthalmology & visual science, 1997. 38(10): p. 1922-1928.
65. Grant, M.B., et al., Effects of epidermal growth factor, fibroblast growth factor, and transforming growth factor-beta on corneal cell chemotaxis. Invest Ophthalmol Vis Sci, 1992. 33(12): p. 3292-301.
66. Ohji, M., N. SundarRaj, and R.A. Thoft, Transforming growth factor-beta stimulates collagen and fibronectin synthesis by human corneal stromal fibroblasts in vitro. Curr Eye Res, 1993. 12(8): p. 703-9.
67. Klenkler, B. and H. Sheardown, Growth factors in the anterior segment: role in tissue maintenance, wound healing and ocular pathology. Experimental Eye Research, 2004. 79(5): p. 677-688.
68. Jester, J.V., et al., Induction of alpha-smooth muscle actin expression and myofibroblast transformation in cultured corneal keratocytes. Cornea, 1996. 15(5): p. 505-516.
69. Carrington, L.M., et al., Differential regulation of key stages in early corneal wound healing by TGF-β isoforms and their inhibitors. Investigative ophthalmology & visual science, 2006. 47(5): p. 1886-1894.
70. Hongo, M., et al., Distribution of epidermal growth factor (EGF) receptors in rabbit corneal epithelial cells, keratocytes and endothelial cells, and the changes induced by transforming growth factor-β1. Experimental eye research, 1992. 54(1): p. 9-16.
71. Mishima, H., et al., Transforming growth factor-β modulates effects of epidermal growth factor on corneal epithelial cells. Current eye research, 1992. 11(7): p. 691-696.
72. HONMA, Y., et al., Effect of transforming growth factor-β1 and-β2 onin vitroRabbit corneal epithelial cell proliferation promoted by epidermal growth factor, keratinocyte growth factor, or hepatocyte growth factor. Experimental eye research, 1997. 65(3): p. 391-396.
73. Yang, A.Y., J. Chow, and J. Liu, Focus: sensory biology and pain: corneal innervation and sensation: the eye and beyond. The Yale journal of biology and medicine, 2018. 91(1): p. 13.
74. Loya-Garcia, D., M.-L. Jesus, and R.-G. Alejandro, The molecular basis of neurotrophic keratopathy: Diagnostic and therapeutic implications. A review. The Ocular Surface, 2020.
75. Chaudhary, S., et al., Neurotrophins and nerve regeneration-associated genes are expressed in the cornea after lamellar flap surgery. Cornea, 2012. 31(12): p. 1460-7.
76. Lambiase, A., et al., Nerve growth factor promotes corneal healing: structural, biochemical, and molecular analyses of rat and human corneas. Investigative ophthalmology & visual science, 2000. 41(5): p. 1063-1069.
77. Landi, F., et al., Topical treatment of pressure ulcers with nerve growth factor: a randomized clinical trial. Annals of internal medicine, 2003. 139(8): p. 635-641.
78. Lambiase, A., et al., Topical treatment with nerve growth factor for corneal neurotrophic ulcers. New England Journal of Medicine, 1998. 338(17): p. 1174-1180.
79. Zhou, Q., et al., Ciliary Neurotrophic Factor Promotes the Activation of Corneal Epithelial Stem/Progenitor Cells and Accelerates Corneal Epithelial Wound Healing. STEM CELLS, 2015. 33(5): p. 1566-1576.
80. Chen, J., et al., Ciliary neurotrophic factor promotes the migration of corneal epithelial stem/progenitor cells by up-regulation of MMPs through the phosphorylation of Akt. Scientific reports, 2016. 6(1): p. 1-9.
81. Arend, W.P., G. Palmer, and C. Gabay, IL‐1, IL‐18, and IL‐33 families of cytokines. Immunological reviews, 2008. 223(1): p. 20-38.
82. Wilson, S.E., et al., The corneal wound healing response:: cytokine-mediated interaction of the epithelium, stroma, and inflammatory cells. Progress in retinal and eye research, 2001. 20(5): p. 625-637.
83. MOHAN, R.R., et al., Apoptosis in the cornea: further characterization of Fas/Fas ligand system. Experimental eye research, 1997. 65(4): p. 575-589.
84. Kaur, H., et al., Corneal myofibroblast viability: Opposing effects of IL-1 and TGF β1. Experimental eye research, 2009. 89(2): p. 152-158.
85. Milner, C.M. and A.J. Day, TSG-6: a multifunctional protein associated with inflammation. Journal of cell science, 2003. 116(10): p. 1863-1873.
86. Day, A.J. and C.M. Milner, TSG-6: A multifunctional protein with anti-inflammatory and tissue-protective properties. Matrix Biology, 2019. 78-79: p. 60-83.
87. Oh, J.Y., et al., Anti-inflammatory protein TSG-6 reduces inflammatory damage to the cornea following chemical and mechanical injury. Proceedings of the National Academy of Sciences, 2010. 107(39): p. 16875-16880.
88. Vatrella, A., et al., Dupilumab: a novel treatment for asthma. Journal of asthma and allergy, 2014. 7: p. 123.
89. Ueta, M., C. Sotozono, and S. Kinoshita, Expression of interleukin-4 receptor α in human corneal epithelial cells. Japanese Journal of Ophthalmology, 2011. 55(4): p. 405-410.
90. Savetsky, I.L., et al., Th2 cytokines inhibit lymphangiogenesis. PloS one, 2015. 10(6): p. e0126908.
91. Sutterwala, F.S., et al., Reversal of proinflammatory responses by ligating the macrophage Fcγ receptor type I. The Journal of experimental medicine, 1998. 188(1): p. 217-222.
92. Martinez, F.O., et al., Macrophage activation and polarization. Front Biosci, 2008. 13(1): p. 453-461.
93. Hos, D., et al., IL-10 Indirectly Regulates Corneal Lymphangiogenesis and Resolution of Inflammation via Macrophages. The American Journal of Pathology, 2016. 186(1): p. 159-171.
94. Azher, T.N., X.-T. Yin, and P.M. Stuart, Understanding the role of chemokines and cytokines in experimental models of herpes simplex keratitis. Journal of immunology research, 2017. 2017.
95. Keadle, T.L. and P.M. Stuart, Interleukin-10 (IL-10) ameliorates corneal disease in a mouse model of recurrent herpetic keratitis. Microbial pathogenesis, 2005. 38(1): p. 13-21.
96. Yan, X.T., et al., Autocrine action of IL‐10 suppresses proinflammatory mediators and inflammation in the HSV‐1‐infected cornea. Journal of leukocyte biology, 2001. 69(1): p. 149-157.
97. Singh, R.B., et al., Pigment Epithelium-derived Factor secreted by corneal epithelial cells regulates dendritic cell maturation in dry eye disease. The ocular surface, 2020. 18(3): p. 460-469.
98. Bouck, N., PEDF: anti-angiogenic guardian of ocular function. Trends in molecular medicine, 2002. 8(7): p. 330-334.
99. Harrell Jr, F.E., Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis. 2015: Springer.
100. Zhang, S.X., et al., Pigment epithelium‐derived factor (PEDF) is an endogenous antiinflammatory factor. The FASEB journal, 2006. 20(2): p. 323-325.
101. Tian, X., et al., PEDF reduces the severity of herpetic simplex keratitis in mice. Investigative ophthalmology & visual science, 2018. 59(7): p. 2923-2931.
102. Ho, T.C., et al., PEDF promotes self‐renewal of limbal stem cell and accelerates corneal epithelial wound healing. Stem Cells, 2013. 31(9): p. 1775-1784.
103. Ambati, B.K., et al., Corneal avascularity is due to soluble VEGF receptor-1. Nature, 2006. 443(7114): p. 993-997.
104. Ambati, B.K., et al., Soluble vascular endothelial growth factor receptor-1 contributes to the corneal antiangiogenic barrier. British journal of ophthalmology, 2007. 91(4): p. 505-508.
105. Foulsham, W., et al., Thrombospondin-1 in ocular surface health and disease. The ocular surface, 2019. 17(3): p. 374-383.
106. Rodríguez-Manzaneque, J.C., et al., Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proceedings of the National Academy of Sciences, 2001. 98(22): p. 12485-12490.
107. Colombo, G., et al., Non-peptidic thrombospondin-1 mimics as fibroblast growth factor-2 inhibitors: an integrated strategy for the development of new antiangiogenic compounds. Journal of Biological Chemistry, 2010. 285(12): p. 8733-8742.
108. Jiménez, B., et al., Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nature medicine, 2000. 6(1): p. 41-48.
109. Isenberg, J.S., et al., CD47 is necessary for inhibition of nitric oxide-stimulated vascular cell responses by thrombospondin-1. Journal of Biological Chemistry, 2006. 281(36): p. 26069-26080.
110. Sekiyama, E., et al., Unique distribution of thrombospondin-1 in human ocular surface epithelium. Investigative ophthalmology & visual science, 2006. 47(4): p. 1352-1358.
111. Uno, K., et al., Thrombospondin-1 accelerates wound healing of corneal epithelia. Biochemical and biophysical research communications, 2004. 315(4): p. 928-934.
112. Weber, A., P. Wasiliew, and M. Kracht, Interleukin-1 (IL-1) pathway. Science signaling, 2010. 3(105): p. cm1-cm1.
113. Cavalli, G. and C.A. Dinarello, Treating rheumatological diseases and co-morbidities with interleukin-1 blocking therapies. Rheumatology, 2015. 54(12): p. 2134-2144.
114. Arend, W.P. and C.J. Guthridge, Biological role of interleukin 1 receptor antagonist isoforms. Annals of the rheumatic diseases, 2000. 59(suppl 1): p. i60-i64.
115. Yan, C., et al., Targeting imbalance between IL-1β and IL-1 receptor antagonist ameliorates delayed epithelium wound healing in diabetic mouse corneas. The American journal of pathology, 2016. 186(6): p. 1466-1480.
116. Stapleton, W.M., et al., Topical interleukin-1 receptor antagonist inhibits inflammatory cell infiltration into the cornea. Experimental eye research, 2008. 86(5): p. 753-757.
117. Niederkorn, J.Y., See no evil, hear no evil, do no evil: the lessons of immune privilege. Nature immunology, 2006. 7(4): p. 354-359.
118. Ryu, Y.-H. and J.-C. Kim, Expression of indoleamine 2, 3-dioxygenase in human corneal cells as a local immunosuppressive factor. Investigative ophthalmology & visual science, 2007. 48(9): p. 4148-4152.
119. Hori, J., et al., Immune privilege in corneal transplantation. Progress in retinal and eye research, 2019. 72: p. 100758.
120. Hori, J., T. Kunishige, and Y. Nakano, Immune Checkpoints Contribute Corneal Immune Privilege: Implications for Dry Eye Associated with Checkpoint Inhibitors. International Journal of Molecular Sciences, 2020. 21(11): p. 3962.
121. Zhang, Y., et al., The limbal epithelial progenitors in the limbal niche environment. International Journal of medical sciences, 2016. 13(11): p. 835.
122. Guo, Z.H., et al., An insight into the difficulties in the discovery of specific biomarkers of limbal stem cells. International Journal of Molecular Sciences, 2018. 19(7): p. 1982.
123. Ben-Zvi, A., et al., Immunohistochemical characterization of extracellular matrix in the developing human cornea. Current eye research, 1986. 5(2): p. 105-117.
124. Schlötzer-Schrehardt, U., et al., Characterization of extracellular matrix components in the limbal epithelial stem cell compartment. Experimental eye research, 2007. 85(6): p. 845-860.
125. Mei, H., S. Gonzalez, and S.X. Deng, Extracellular matrix is an important component of limbal stem cell niche. Journal of Functional Biomaterials, 2012. 3(4): p. 879-894.
126. Mishima, H., et al., SPARC from corneal epithelial cells modulates collagen contraction by keratocytes. Investigative ophthalmology & visual science, 1998. 39(13): p. 2547-2553.
127. Abe, K., et al., The cytokine regulation of SPARC production by rabbit corneal epithelial cells and fibroblasts in vitro. Cornea, 2004. 23(2): p. 172-179.
128. Trosan, P., et al., The key role of insulin-like growth factor I in limbal stem cell differentiation and the corneal wound-healing process. Stem cells and development, 2012. 21(18): p. 3341-3350.
129. Qi, H., et al., Nerve growth factor and its receptor TrkA serve as potential markers for human corneal epithelial progenitor cells. Experimental eye research, 2008. 86(1): p. 34-40.
130. Saghizadeh, M., et al., Alterations of epithelial stem cell marker patterns in human diabetic corneas and effects of c-met gene therapy. Molecular vision, 2011. 17: p. 2177.
131. Baranowski, P., et al., Ophthalmic drug dosage forms: characterisation and research methods. The Scientific World Journal, 2014. 2014.
132. Bennett, N.H., et al., Material, Immunological, and Practical Perspectives on Eye Drop Formulation. Advanced Functional Materials, 2020. 30(14): p. 1908476.
133. Fish, R. and R.S. Davidson, Management of ocular thermal and chemical injuries, including amniotic membrane therapy. Current opinion in ophthalmology, 2010. 21(4): p. 317-321.
134. Dohlman, C.H., F. Cade, and R. Pfister, Chemical burns to the eye: paradigm shifts in treatment. 2011, LWW.
135. Baradaran-Rafii, A., et al., Current and Upcoming Therapies for Ocular Surface Chemical Injuries. The Ocular Surface, 2017. 15(1): p. 48-64.
136. Marchini, G., et al., Long‐term effectiveness of autologous cultured limbal stem cell grafts in patients with limbal stem cell deficiency due to chemical burns. Clinical & experimental ophthalmology, 2012. 40(3): p. 255-267.
137. Fuest, M., et al., Advances in corneal cell therapy. Regenerative medicine, 2016. 11(6): p. 601-615.
138. Rama, P., et al., Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency1. Transplantation, 2001. 72(9): p. 1478-1485.
139. Sacchetti, M., et al., Limbal stem cell transplantation: Clinical results, limits, and perspectives. Stem cells international, 2018. 2018.
140. Mansoor, H., et al., Current trends and future perspective of mesenchymal stem cells and exosomes in corneal diseases. International journal of molecular sciences, 2019. 20(12): p. 2853.
141. Ullah, M., D.D. Liu, and A.S. Thakor, Mesenchymal Stromal Cell Homing: Mechanisms and Strategies for Improvement. iScience, 2019. 15: p. 421-438.
142. Nitzsche, F., et al., Concise Review: MSC Adhesion Cascade—Insights into Homing and Transendothelial Migration. STEM CELLS, 2017. 35(6): p. 1446-1460.
143. Kusuma, G.D., et al., Effect of the microenvironment on mesenchymal stem cell paracrine signaling: opportunities to engineer the therapeutic effect. Stem cells and development, 2017. 26(9): p. 617-631.
144. Kuraitis, D., et al., Exploiting extracellular matrix-stem cell interactions: a review of natural materials for therapeutic muscle regeneration. Biomaterials, 2012. 33(2): p. 428-443.
145. Khubutiya, M.S., et al., Paracrine mechanisms of proliferative, anti-apoptotic and anti-inflammatory effects of mesenchymal stromal cells in models of acute organ injury. Cytotherapy, 2014. 16(5): p. 579-585.
146. Singer, N.G. and A.I. Caplan, Mesenchymal Stem Cells: Mechanisms of Inflammation. Annual Review of Pathology: Mechanisms of Disease, 2011. 6(1): p. 457-478.
147. Mishra, V.K., et al., Identifying the Therapeutic Significance of Mesenchymal Stem Cells. Cells, 2020. 9(5): p. 1145.
148. Carty, F., B.P. Mahon, and K. English, The influence of macrophages on mesenchymal stromal cell therapy: passive or aggressive agents? Clinical & Experimental Immunology, 2017. 188(1): p. 1-11.
149. Baraniak, P.R. and T.C. McDevitt, Stem cell paracrine actions and tissue regeneration. Regenerative medicine, 2010. 5(1): p. 121-143.
150. Ghannam, S., et al., Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications. Stem cell research & therapy, 2010. 1(1): p. 1-7.
151. Giordano, A., U. Galderisi, and I.R. Marino, From the laboratory bench to the patient's bedside: an update on clinical trials with mesenchymal stem cells. Journal of cellular physiology, 2007. 211(1): p. 27-35.
152. Beeken, L.J., D.S. Ting, and L.E. Sidney, Potential of mesenchymal stem cells as topical immunomodulatory cell therapies for ocular surface inflammatory disorders. Stem cells translational medicine, 2020.
153. Li, F. and S.-Z. Zhao, Mesenchymal stem cells: Potential role in corneal wound repair and transplantation. World journal of stem cells, 2014. 6(3): p. 296.
154. Lin, K.-J., et al., Topical administration of orbital fat-derived stem cells promotes corneal tissue regeneration. Stem cell research & therapy, 2013. 4(3): p. 72.
155. Mittal, S.K., et al., Restoration of corneal transparency by mesenchymal stem cells. Stem cell reports, 2016. 7(4): p. 583-590.
156. Coulson-Thomas, V., et al., Transpalntation of umbilical mesenchymal stem cells cures the corneal defects of Mucopolysaccharidosis VII mice. Investigative Ophthalmology & Visual Science, 2013. 54(15): p. 1009-1009.
157. Carter, K., et al., Characterizing the impact of 2D and 3D culture conditions on the therapeutic effects of human mesenchymal stem cell secretome on corneal wound healing in vitro and ex vivo. Acta biomaterialia, 2019. 99: p. 247-257.
158. Yang, M.-J., et al., Novel method of forming human embryoid bodies in a polystyrene dish surface-coated with a temperature-responsive methylcellulose hydrogel. Biomacromolecules, 2007. 8(9): p. 2746-2752.
159. Lee, W.Y., et al., The use of injectable spherically symmetric cell aggregates self-assembled in a thermo-responsive hydrogel for enhanced cell transplantation. Biomaterials, 2009. 30(29): p. 5505-13.
160. Eslani, M., et al., Corneal Mesenchymal Stromal Cells Are Directly Antiangiogenic via PEDF and sFLT-1. Investigative ophthalmology & visual science, 2017. 58(12): p. 5507-5517.
161. Er, H. and E. Uzmez, Effects of Transforming Growth Factor-Beta 2, Interleukin 6 and Fibronectin on Corneal Epithelial Wound Healing. European Journal of Ophthalmology, 1998. 8(4): p. 224-229.
162. Nishida, T., et al., Fibronectin promotes epithelial migration of cultured rabbit cornea in situ. The Journal of cell biology, 1983. 97(5): p. 1653-1657.
163. Hsu, T.-W., et al., Transplantation of 3D MSC/HUVEC spheroids with neuroprotective and proangiogenic potentials ameliorates ischemic stroke brain injury. Biomaterials, 2021. 272: p. 120765.
164. Omoto, M., et al., Hepatocyte growth factor suppresses inflammation and promotes epithelium repair in corneal injury. Molecular Therapy, 2017. 25(8): p. 1881-1888.
165. Hu, C., et al., Basic fibroblast growth factor stimulates epithelial cell growth and epithelial wound healing in canine corneas. Vet Ophthalmol, 2009. 12(3): p. 170-5.
166. Meduri, A., et al., Effect of basic fibroblast growth factor on corneal epithelial healing after photorefractive keratectomy. Journal of Refractive Surgery, 2012. 28(3): p. 220-223.
167. Gallego-Muñoz, P., et al., Effects of TGFβ1, PDGF-BB, and bFGF, on human corneal fibroblasts proliferation and differentiation during stromal repair. Cytokine, 2017. 96: p. 94-101.
168. Trosan, P., et al., The supportive role of insulin-like growth factor-I in the differentiation of murine mesenchymal stem cells into corneal-like cells. Stem cells and development, 2016. 25(11): p. 874-881.
169. Oh, J.Y., et al., The anti-inflammatory and anti-angiogenic role of mesenchymal stem cells in corneal wound healing following chemical injury. Stem Cells, 2008. 26(4): p. 1047-55.
170. Lee, R.H., et al., TSG-6 as a biomarker to predict efficacy of human mesenchymal stem/progenitor cells (hMSCs) in modulating sterile inflammation in vivo. Proceedings of the National Academy of Sciences, 2014. 111(47): p. 16766-16771.
171. Wight, T.N., et al., Light microscopic immunolocation of thrombospondin in human tissues. Journal of Histochemistry & Cytochemistry, 1985. 33(4): p. 295-302.
172. Song, N., M. Scholtemeijer, and K. Shah, Mesenchymal Stem Cell Immunomodulation: Mechanisms and Therapeutic Potential. Trends in Pharmacological Sciences, 2020. 41(9): p. 653-664.
173. Gao, F., et al., Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell death & disease, 2016. 7(1): p. e2062-e2062.
174. Oh, J.Y., et al., Effects of mesenchymal stem/stromal cells on cultures of corneal epithelial progenitor cells with ethanol injury. Investigative ophthalmology & visual science, 2014. 55(11): p. 7628-7635.
175. Yamada, J., et al., Local suppression of IL-1 by receptor antagonist in the rat model of corneal alkali injury. Experimental eye research, 2003. 76(2): p. 161-167.
176. Singh, A., et al., Matrix metalloproteinases (MMP-2 and MMP-9) activity in corneal ulcer and ocular surface disorders determined by gelatin zymography. Journal of ocular biology, diseases, and informatics, 2012. 5(2): p. 31-35.
177. Nagase, H., R. Visse, and G. Murphy, Structure and function of matrix metalloproteinases and TIMPs. Cardiovascular Research, 2006. 69(3): p. 562-573.
178. Tseng, H.-C., et al., IL-1β promotes corneal epithelial cell migration by increasing MMP-9 expression through NF-κB-and AP-1-dependent pathways. PLoS one, 2013. 8(3): p. e57955.
179. Ernst, O., S.J. Vayttaden, and I.D.C. Fraser, Measurement of NF-κB Activation in TLR-Activated Macrophages. Methods in molecular biology (Clifton, N.J.), 2018. 1714: p. 67-78.