簡易檢索 / 詳目顯示

研究生: 詹世基
Chan, Shih-Chi
論文名稱: 電解式微幫浦之研發及潛在應用
Development and potential applications of an electrolysis micropump
指導教授: 劉承賢
Liu, Cheng-Hsien
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 104
中文關鍵詞: 熱管電解式微幫浦埋藏式微流體陣列探針元件
外文關鍵詞: heat pipe, electrolysis micropump, embedded microfluidic array probe
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 新一代的微幫浦已經不再是單一的單純功能,因為已經朝系統晶片的整合及生醫應用方向做整體的規劃,所以如何發展一個易整合於各種元件及系統的微幫浦是個很重要的議題,我們欲發展低耗能往復式電解微幫浦的元件開發及應用,而此在封閉系統中可往復來回致動的電解幫浦,相信在未來應用於微流體元件的整合應用將有很大的潛在發展,例如在本研究中所製作出的埋藏式微流體陣列探針元件,未來如果可以將微幫浦的元件與埋藏式微流體陣列探針元件作一結合,相信會對微流體及生醫元件有很大的幫助。
    近年來,diagnostic screening 是個很重要的議題,而微機電在生醫領域中具有低成本製造、較少的試劑樣本的消耗及迅速並有利於point-of-care 測試及陣列式的處理樣本及試劑等優點的運用;此微機電技術將使人類在臨床醫學及藥物輸送的方面有突破性的發展,並且有大量的學者對於微探針在生醫領域上的運用有相當不錯的貢獻及相當好的研究成果,但大部分皆著重在單純電極探針(例如:Wise 教授研究團隊)在生醫(例如:電生理)上的運用;但在治療方面,偏好具有流道的探針,因為具有藥物傳輸的優點及治療功效,並且利用微機電製程所製造具有流道的探針對於長期藥物的注入(或產生濃度梯度)方面有很大的優勢。
    藥物輸送有很多因素需要考慮及分析,一般細胞或組織用藥都是非常昂貴或求取不易,所以如果能夠精確及給予適當的劑量就可以達到較少劑量的損耗或浪費,這將可以省掉很多開發用藥或研究或觀測細胞(組織)行為時所需的研究經費; 因此如果可以製造細胞等級尺寸大小的陣列式微小具有埋藏式中空流道的噴藥(或產生濃度梯度)裝置或元件,期望將對生醫領域有很大的幫助。本論文包含四個部分,第一是將製作一個生醫平台所需埋藏式流道的元件,第二是發展往復式電解幫浦,論文中將有詳細的製程介紹與其致動的原理分析;第三是在埋藏式流道通入染料以驗證其埋藏式流道的通透性;最後在電解幫浦的部分,利用簡單的玻璃片上沉積電極與PDMS流道的簡易製程,完成了往復式電解幫浦的雛形及實驗驗證其往復式概念的可行性。本論文發展之電解式微幫浦晶片具有製作簡單且易整合的優點,希望在未來發展之生物晶片上能有所應用。


    Through decades of developing micropumps in the MEMS field, a new micropump design should not only focus on performance and function, but should also target the ability to be integrated into BioMEMS system chips for the achievement of versatile applications. For this reason, a new micropump design, possessing the potential to integrate with various developed microdevices, has considerable value. This study proposes a new electrolysis micropump, featuring low power consumption and heat pipe-like back and forth actuation. It is believed that such design would have large potential to integrate with varied microfluidic devices. It is also believed that the combination of our micropump and an embedded microfluidic array probe matches the future trend of BioMEMS development, and provides a high quality tool for further study of medical tests involving biological samples.
    In recent years, diagnostic screening has drawn increasing attention. The advantages of BioMEMS technology include low fabrication cost, low sample consumption, and a rapid reaction rate suitable for point-of-care testing. Processing samples and reagents in array form could provide a breakthrough for clinical medicine and drug delivery development. Many studies have been conducted on the microprobe for biological applications, but most of them, such as the work of Professor Wise's team, focused solely on electrode probes for electrophysiology applications. However, attention to treatment requirements and microprobe design with flow channels is preferable. It has the capacity for drug delivery; furthermore, it is superior in long-term medicine injections and medicine gradient generation.
    Some important issues regarding drug delivery. Generally speaking, medicines or reagents used for cells and tissues are expensive and not easily accessible, and the required doses are critical. Therefore, if the dose could be administered precisely, it would fit the desire of experiment control and be economical. That is why a cell-size compatible microprobe array with embedded hollow flow channel for drug injection contributes largely to the biomedical field. This thesis comprises of four main parts: first, the realization of microprobe with embedded flow channel and heat pipe-like micropump and their microfabrication process; second, the actuation principle of the heat pipe-like electrolysis micropump; third, the injection of dye solution for confirmation of the lack of obstruction in the flow channel; finally, the experiment of the heat-pipe like micropump with the phenomena of back and forth actuation. The micropump developed in this thesis has the advantage of easy fabrication and easy integration with other devices, and is expected to be applied to other BioMEMS chips in the future.

    摘要 I Abstract III Table of contents VI List of figures VIII List of tables XIV Chapter 1 Introduction 1 1.1 Background of microfluidic systems and micropump technologies 1 1.2 Micropump technology for cooling potential application 4 1.3 Microfluidic devices for tissue engineering's potential application 8 1.3.1 Background of tissue engineering 9 1.3.2 Microfluidic probe for extracorporeal tissue engineering’s potential application 10 Chapter 2 Development of electrolysis-bubble-based micropump 16 2.1 Design Concept and Working Principle 16 2.1.1 Electrolysis 16 2.1.2 Theoretical model of micropump 23 2.1.3 Theoretical model of the reverse reaction (bubble elimination) in the micropump 25 2.2 Materials and methods 27 2.2.1 Micropump fabrication process 27 2.2.2 Experimental setup for electrolysis bubble-based micropump 30 2.3 Experimental test of electrolysis-bubble-based micropump 32 Chapter 3 Development of BioMEMS device 42 3.1 Design concept and silicon etchant 42 3.1.1 Bulk micromachining technology 42 3.1.2 Characteristic of silicon etchant 43 3.1.3 Influence of boron diffusion in etching solutions 46 3.1.4 Microfluidic Microprobes 54 3.2 Materials and methods 58 3.2.1 Fabrication of multi-microchannel probe array 58 3.2.2 BioMEMS drug delivery device fabrication process 63 3.2.3 Experimental setup for BioMEMS drug delivery device 65 3.3 Experimental test of BioMEMS 66 3.3.1 Results of the probe with the micro-tunnel 66 3.3.2 Injecting dye into the micro-tunnel of the probe 78 Chapter 4 Conclusions 82 4.1 Conclusion 82 4.2 Recommendations for future studies 84 References 89 Biography 99 List of publications 100 List of conference papers 101 Others 101 Award 102 Review Paper 102 Appendix 103

    [1] A. Manz, N. Graber, H. M. Widmer, “Micro total analytical system,” Sensors and Actuators B, pp. 244-248, 1990.
    [2] D. J. Laser and J. G. Santiago, “A Review of Micropumps”, J. Micromech. Microeng., vol. 14, no. 6, pp. R35-R64, 2004.
    [3] K. W. Oh and C. H. Ahn, "A review of microvalves," J. Micromech. Microeng., vol. 16, no 5 pp. R13-R39, 2006.
    [4] T. Thorsen, S. J. Maerkl, S. R. Quake, “Microfluidic large-scale integration,” Science, 298, pp.580-584, 2002.
    [5] G. C. Birura, et al. , “Micro/nano spacecraft thermal control using a MEMS-based pumped liquid cooling system,” SPIE Microfluidics and BioMEMS,pp.196-205, 2001.
    [6] http://www.cooligy.com/pdf/Cooligy_MicroStructure_White_Paper.pdf
    [7] http://www.hotchips.org/archives/hc16/2_Mon/16_HC16_bw.pdf
    [8] J. Kirshberg, et al. , Cooling Effect of a MEMS Based Micro Capillary Pumped Loop for Chip-level Temperature Control , ASME, pp.1-8, 2000.
    [9] C. Hilbert, et al. , Thermoelectric MEMS Coolers 18th International Conference on Thermoelectrics, 1999.
    [10] R. Osiander, et al. , MEMS and Microstructures in Aerospace Applications, pp198~199, 2005.
    [11] G. Birur, et al. , MEMS Based Pumped Liquid Cooling Systems for Micro/Nano Spacecraft Thermal Control, The International Conference on Nano/Microtechnology for Space and Biomedical Applications, http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12467/1/01-0606.pdf
    [12] H. Andersson, et al. , A Valve-less Diffuser Micropump for Microfluidic Analytical Systems, Sensors and Actuators B: Chemical, vol. 72, no. 3, pp. 259-265,2001.
    [13] L. Cao, et al. , Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology, Sensors and Actuators A: Physical, vol. 94, no. 1-2, pp. 117-125, 2001.
    [14] M. Koch, et al., A Novel Micromachined Pump Based on Thick-Film Piezoelectric Actuation, Sensors and Actuators A: Physical, vol. 70, no. 1-2, pp. 98-103, 1998.
    [15] S. Santra, et al. , Fabrication and testing of a magnetically actuated micropump, Sensors and Actuators B: Chemical, vol. 87, no. 2, pp. 358-364, 2002.
    [16] O. C. Jeong and S. S. Yang, Fabrication and test of a. thermopneumatic micropump with a corrugated P. +. Diaphargm, Sensors and Actuators A: Physical 83, pp. 249-255, 2000.
    [17] O. Francais and I. Dufour, Dynamic simulation of an electrostatic micropump with pull-in and hysteresis phenomena, Sensors and Actuators A: Physical (70) (1-2), pp. 56-60, 1998.
    [18] A. D. Stroock, et al. , Patterning electro-osmotic flow with patterned surface charge, Phys. Rev. Lett. 84 (15) (2000) 3314-3317.
    [19] A. Manz, et al. , Electroosmotic pumping and. electrophoretic separations for miniaturized chemical analysis systems, J. Micromech. Microeng. 4 (4), pp. 257-265, 1994.
    [20] A. Richter, et al. , A micromachined electrohydrodynamic (EHD) pump, Sensors and Actuators A: Physical 29 (2), pp. 159-168, 1991.
    [21] T. K. Jun and C. J. Kim, Valveless Pumping using Traversing Vapor Bubbles in Microchannels, J. Applied Physics 83 (11) , pp. 5658-5664, 1998.
    [22] J. H. Tsai and L. Lin, A Thermal-Bubble-Actuated Micronozzle-Diffuser Pump, J. of Microelectromechanical Systems, 11 (6), pp. 665-671, 2002.
    [23] X. Geng, et al. , Bubble-based micropump for electrically conducting liquids, J. Micromech. Microeng. 11 (3), pp. 270-276, 2001.
    [24] Z. Yin and A. Prosperetti, A microfluidic ‘blinking bubble’ pump, J. Micromech. Microeng. 15 (3), pp. 643-651, 2005.
    [25] J. H. Tsai, L. W. Lin, Transient Thermal Bubble Formation on Polysilicon Micro-Resisters, J. of Heat Transfer 124 (2) , pp. 375-382, 2002.
    [26] P. F. Man, et al. , Microfabricated Capillarity-Driven Stop Valve and Sample Injector, MEMS, pp. 45-50, 1998.
    [27] S. Böhm, et al. , A closed-loop controlled electrochemically actuated micro-dosing system, J. Micromech. Microeng. 10 (4) , pp. 498-504, 2000.
    [28] A. A. Deshmukh, et al. , Characterization of. a micro-mixing, pumping, and valving system, Solid-State Sensors and Actuators Transducers, pp. 950-953, 2001.
    [29] D. A. Ateya, et al. , An electrolytically actuated micropump, Rev. Sci. Instrum. 75 (4), pp. 915-920, 2004.
    [30] D. S. Meng and C. J. Kim, Micropumping by Directional Growth and Hydrophobic Venting of Bubbles, MEMS, pp. 423-42, 2005.
    [31] D. J. Laser, et al. , Silicon Electroosmotic Micropumps For Integrated Circuit Thermal Management, The 12th International Conferenceo n Solid Slate Sensors. Acuators and Microsystems.
    [32] C.-M. Cheng and C.-H. Liu , An Electrolysis-Bubble-Actuated Micropump Based on the Roughness Gradient Design of Hydrophobic Surface,J. Microelectromech. Syst. 6 (5), pp. 1095–1105, 2007.
    [33] P. F. Man, et al. , Microfabricated plastic capillary systems with photo-definable hydrophilic and hydrophobic regions, Transducer, pp. 738–741, 1999.
    [34] J. Lee, et al. , Electrowetting and electrowetting-on-dielectric for microscale liquid handling, Sensors and Actuators A: Physical 95 (2-3), pp. 259–268, 2002.
    [35] C.-M. Cheng and C.-H. Liu, A Capillary System With Thermal-Bubble- Actuated 1xN Microfluidic Switches via Time-Sequence Power Control for Continuous Liquid Handling, J. Microelectromech. Syst. 15 (2), pp. 296–307, 2006.
    [36] J.H. Kang, et al. , Analysis of pressure-driven air bubble elimination in a microfluidic device, Lab chip, 8 (1), pp. 176–178, 2008.
    [37] R. C. Anderson, G. J. Bogdan, A. Puski, and X. Su, “Genetic analysis systems: Improvements and methods,” In Proc. Solid-State Sens. Actuator Workshop, Hilton Head, SC, pp. 7–10, 1998.
    [38] C. Bisson, J. Campbell, R. Cheadle, M. Chomiak, J. Lee, C. Miller, C. Milley, P. Pialis, S. Shaw, W. Weiss, and C. Widrig, “A microanalytical device for the assessment of coagulation parameters in whole blood,” In Proc. Solid-State Sens. Actuator Workshop, Hilton Head, SC, pp. 1–6, 1998.
    [39] N. Chiem, C. Colyer, and J. D. Harrison, “Microfluidic systems for clinical diagnostics,” In Proc. Int. Solid-State Sens. Actuators Conf., Chicago, IL, pp. 183–186, 1997.
    [40] S.J. Hollister, “Porous scaffold design for tissue engineering,” Nat. Mater., 4, pp. 518-524, 2005.
    [41] J. L. Drury, and D. J. Mooney, “Hydrogels for tissue engineering: scaffold design variables and applications,” Biomaterials 24, pp. 4337-4351, (2003).
    [42]K. M. Kulig, and J. P. Vacanti, “Hepatic tissue engineering,” Transpl Immunol, 12(3-4), pp. 303-10, 2004.
    [43] M. Julia, Polak et al., “Advances in Tissue Engineering,” , books.google.com, 2008.
    [44] H. Tan and K. G. Marra, “Injectable, Biodegradable Hydrogels for Tissue Engineering Applications,” Materials , 3, pp. 1746-1767, 2010.
    [45] Y. M. Khong, J. Z., S. Zhou, C. C. K. Doberstein, V. Samper, H. Yu, “Novel Intra-Tissue Perfusion System for Culturing Thick Liver Tissue,” Tissue Engineering, Volume 13, Number 9, 2007.
    [46] G. N. Bancroft, V.I. Sikavitsas, A.G. Mikos, “Design of a Flow Perfusion Bioreactor System for Bone Tissue-engineering Applications, ” Tissue Engineering,9, 549, 2003.
    [47] H. Singh, S. H. Teoh, H.T. Low, and D.W. Hutmacher, “ Flow Modelling within a Scaffold under The Influence of Uniaxial and Bi-axial Bioreactor Rotation, ” J. Biotechno, 119,181,2005.
    [48] P. Eiselt, B.S. Kim, B., Chacko, B. Isenberg, M.C., Peters, K.G. Greene, W.D. Roland, A.B. Loebsack, K.J.L. Burg, C., Culberson, C.R. Halberstadt, W.D. Holder, and D.J. Mooney, “Development of Technologies Aiding Large-tissue Engineering,” Biotechnol. Prog,14, 134, 1998.
    [49]M. Shikida, K. Sato, K. Tokoro, D. Uchikawa. “Differences in anisotropic etching properties of KOH and TMAH” Sensors and Actuators 80, pp. 179–188, 2000.
    [50] E. D. Palik, H. F. Gray, and P. B. Klein, “A Raman study of etching silicon in aqueous KOH”, J. Electrochem. Soc., 130, pp. 956, 1983.
    [51] E. D. Palik, V. M. Bermudez, and O. J. Glembocki, “Ellipsometric study of orientation-dependent etching of silicon in aqueous KOH”, J. Electrochem. Soc., 132, pp. 871, 1985.
    [52] E. D. Palik, V. M. Bermudez, and O. J. Glembocki, “Ellipsometric study of the etch-stop mechanism in heavily doped silicon”, J. Electrochem. Soc., 132, pp. 135, 1985.
    [53] H. Seidel, L. Csepregi, A. Heuberger,“Anisotropic Etching of Crystalline Silicon in Alkaline Solutions I”, J. Electrochem. Soc., Vol.137, No.11 , p.3612-3626, 1990.
    [54] H. Seidel, L. Csepregi, A. Heuberger,“Anisotropic Etching of Crystalline Silicon in Alkaline Solutions II”, J. Electrochem. Soc., Vol.137, No.11, p.3626-3632, 1990.
    [55] E. Steinsland, M, Nese, G. Kittilsland, et al., “Boron Etch-stop in TMAH Solutions”, Sensors and Actuators A54, 728-732, 1996.
    [56] Lin and A. P. Pisano, “Silicon-processed microneedles,” J. Microelec- tromech. Syst., vol. 8, Mar. 1999.
    [57] J.D. Zahn, A. Deshmukh, A.P. Pisano, D. Liepmann “Continuous on-chip micropumping for microneedle enhanced drug delivery,” Biomedical Microdevices. 3:183-90, 2004.
    [58] B. Stoeber and D. Liepmann ,Two-Dimensional Arrays of Out-of-Plane Needles, Proceedings of the 2000 ASME international Mechanical Engineering Congress and Exposition.
    [59] K. Najafi, K. D. Wise, and T. Mochizuki, “A high-yield IC-compatible multichannel recording array,” IEEE Trans. Electron Devices, vol. ED- 32, pp. 1206–1211, 1985.
    [60] Maluf, C. W. Storment, J. M. Bower and G. T. A. Kovacs,. “Plasma-etched neural probes”, Sensors and Actuators, A 58, 27-35, 1997.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE