研究生: |
林弘偉 Lin, Hon-Way |
---|---|
論文名稱: |
三族氮化物奈米柱之成長、物性分析及元件應用 Epitaxial Growth, Fundamental Properties, and Device Applications of III-Nitride Semiconductor Nanorods |
指導教授: |
果尚志
Gwo, Shangjr |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2010 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 105 |
中文關鍵詞: | 氮化鎵 、氮化銦鎵 、奈米柱 、白光發光二極體 、分子束磊晶 、三族氮化物 |
外文關鍵詞: | GaN, InGaN, Nanorods, Withe LEDs, PAMBE, III-Nitrides |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Plasma-assisted molecular beam epitaxy (PAMBE) is applied in this dissertation for self-assembled III-nitride (GaN, InGaN, and InN) nanorod arrays growth. Both structural and optical properties were discussed in detail, and the devices were fabricated to demonstrate their potential to application.
PAMBE grown GaN nanorod arrays were completely relaxed, strain-free single crystals. The high emission efficiency and excitonic properties of GaN nanorod arrays have been demonstrated.
By using self-assembled GaN nanorod arrays as strain-free growth templates, we introduce the concept of thick InGaN nanodisks to demonstrate full-color applications to overcome the low efficient emission in long wavelength regions. Otherwise, we could not get efficient long-wavelength emissions beyond the blue region due to a strong quantum confined Stark effect (QCSE) in lattice-mismatched polar InGaN quantum wells. In combination with enhanced carrier localization and high crystalline quality, this approach allows us to realize full-color InGaN nanodisk emitters. By tailoring the numbers, positions, and thicknesses of polychromatic nanodisk ensembles embedded vertically in the GaN nanorod p-n junction, we are able to demonstrate natural white (color temperature ~6,000 K) electroluminescence from InGaN/GaN nanorod arrays.
本論文討論以在矽基板上利用分子束磊晶成長法應用於三族氮化物(氮化鎵、氮化銦鎵)奈米柱材料之成長。並對其結構以及光學性質做詳細的分析與討論,並以實際元件來說明此材料之發展潛力。
矽基板相較於其它基板(例如: 氧化鋁、碳化矽)擁有與價格便宜之優勢,適合大面積成長,且易與IC製程整合。利用分子束磊晶所成長出的三族氮化物奈米柱呈垂直於基板的排列,且每一奈米柱皆為無應力之單晶結構,依據螢光光譜量測,氮化鎵奈米柱具有激子的發光特性且有很好的發光效率。確定了氮化鎵奈米柱之優良特性後,我們利用此結構當作模板,並且成功地在上面成長出涵蓋全可見光(400 -700 nm)波段之氮化銦鎵奈米碟。相較於氮化銦鎵薄膜,奈米碟擁有發光參數容易調控,且在長波長範圍之發光強度減弱不如薄膜嚴重。利用這些特性,我們試著將各種不同發光波段之奈米碟依不同厚度與層數疊在一起,利用此概念,成長出不需要利用任何螢光粉輔助之白光發光二極體結構,對白光照明,提供了一個新的解決方法。
Chapter 1
1. H. S. Nalwa, Handbook of Nanostructured Materials and Nanotechnology (Academic Press, New York, 2000).
2. V. M. Shalaev and M. Moskovits, Nanostructured Materials: Clusters, Composites, and Thin Films (American Chemical Society, Washington DC, 1997).
3. A. S. Edelstein and R. C. Cammarata, Synthesis, Properties, and Applications (Institute of Physics, Philadelphia, PA 1996).
4. Z. L. Wang, Characterizing the Structure and Properties of Individual Wire-Like Nanoentities, Adv. Mater. 12, 1295 (2000).
5. J. Hu, T. W. Odom, and C. M. Lieber, Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes, Acc. Chem. Res. 32, 435 (1999).
6. R. S. Wagner, W. C. Ellis, VAPOR-LIQUID-SOLID MECHANISM OF SINGLE CRYSTAL GROWTH, Appl. Phys. Lett. 4, 89 (1964).
7. H. Wang and G. S. Fischman, Role of liquid droplet surface diffusion in the vapor‐liquid‐solid whisker growth mechanism, J. Appl. Phys. 76, 1557 (1994).
8. L. Schubert, P. Werner, N. D. Zakharov, G. Gerth, F. M. Kolb, L. Long, U. Gösele, and T. Y. Tan, Silicon nanowhiskers grown on <111>Si substrates by molecular-beam epitaxy, Appl. Phys. Lett. 84, 4968 (2004).
9. S. Kodambaka, J. Tersoff, M. C. Reute, F.M. Ross, Germanium Nanowire Growth Below the Eutectic Temperature, Science 316, 729 (2007).
10. A. M. Morales, C. M. Lieber, A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires, Science 279, 208 (1998).
11. D. P. Yu, Z. G. Bai, Y. Ding, Q.L. Hang, H.Z. Zhang, J.J.Wang, Y.H. Zou, W. Qian, G.C. Xiong, H.T. Zhou, S.Q. Feng, Nanoscale silicon wires synthesized using simple physical evaporation, Appl. Phys. Lett. 72, 3458 (1998).
12. P. Yang, The Chemistry and Physics of Semiconductor Nanowires, MRS Bull. 30, 85 (2005).
13. Y. F. Zhang, Y. H. Zhang, N. Wang, D. P. Yu, C. S. Lee, I. Bello, and S. T. Lee, Silicon nanowires prepared by laser ablation at high temperature, Appl. Phys. Lett. 72, 1835 (1998).
14. N. Wang, Y. F. Zhang, Y. H. Tang, C. S. Lee, S. T. Lee, SiO2-enhanced synthesis of Si nanowires by laser ablation, Appl. Phys. Lett. 73, 3902 (1998).
15. Z. W. Pen, Z. R. Dai, Z. L. Wang, Nanobelts of Semiconducting Oxides, Science 291, 1947 (2001).
16. Z. H. Wu, X. Y. Mei, D. Kim, M. Blumin, and H. E. Ruda, Growth of Au-catalyzed ordered GaAs nanowire arrays by molecular-beam epitaxy, Appl. Phys. Lett. 81, 5177 (2002).
17. Y. F. Chan, X. F. Duan, S. K. Chan, I. K. Sou, X. X. Zhang, and N. Wang, ZnSe nanowires epitaxially grown on GaP(111) substrates by molecular-beam epitaxy, Appl. Phys. Lett. 83, 2665 (2003).
18. M. T. Björk, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, One-dimensional heterostructures in semiconductor nanowhiskers, Appl. Phys. Lett. 80, 1058 (2002).
19. M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita and K. Kishino, Growth of Self-Organized GaN Nanostructures on Al2O3(0001) by RF-Radical Source Molecular Beam Epitaxy, Jpn. J. Appl. Phys. 36, L459 (1997).
20. C.-C. Hong, H. Ahn, C.-Y. Wu, and S. Gwo, Strong green photoluminescence from InxGa1-xN/GaN nanorod arrays, Opt. Express 16, 17227 (2009).
21. C.-H. Shen, H.-Y. Chen, H.-W. Lin, S. Gwo, A. A. Klochikhin, and V. Yu. Davydov, Near-infrared photoluminescence from vertical InN nanorod arrays grown on silicon: Effects of surface electron accumulation layer, Appl. Phys. Lett. 88, 253104 (2006).
Chapter 3
22. T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect, Appl. Phys. Lett. 73, 1691 (1998).
23. E. Calleja, M. A. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, S. I. Molina, A. M. Sánchez, F. J. Pacheco, and R. García, Growth of III-nitrides on Si(111) by molecular beam epitaxy Doping, optical, and electrical properties, J. Cryst. Growth 201-202, 296 (1999).
24. L. W. Tu, C. L. Hsiao, T. W. Chi, I. Lo, and K. Y. Hsieh, Self-assembled vertical GaN nanorods grown by molecular-beam epitaxy, Appl. Phys. Lett. 82, 1601 (2003).
25. K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, and A. V. Davydov, Spontaneously grown GaN and AlGaN nanowires, J. Cryst. Growth 287, 522 (2006).
26. L. Cerutti, J. Ristic, S. Fernández-Garrido, E. Calleja, A. Trampert, K. H. Ploog, S. Lazic, and J. M. Calleja, Wurtzite GaN nanocolumns grown on Si(001) by molecular beam epitaxy, Appl. Phys. Lett. 88, 213114 (2006).
27. S. Luryi and E. Suhir, New approach to the high quality epitaxial growth of lattice‐mismatched materials, Appl. Phys. Lett. 49, 140 (1986).
28. D. Zubia and S. D. Hersee, Nanoheteroepitaxy: The Application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials, J. Appl. Phys. 85, 6492 (1999).
29. K. Kusakabe, A. Kikuchi, and K. Kishino, Overgrowth of GaN layer on GaN nano-columns by RF-molecular beam epitaxy, J. Cryst. Growth 237-239, 988 (2002).
30. H.-M. Kim, T. W. Kang, and K. S. Chung, Nanoscale Ultraviolet-Light-Emitting Diodes Using Wide-Bandgap Gallium Nitride Nanorods, Adv. Mater. 15, 567 (2003).
31. A. Kikuchi, M. Kawai, M. Tada, and K. Kishino, Nanoscale Ultraviolet-Light-Emitting Diodes Using Wide-Bandgap Gallium Nitride Nanorods, Jpn. J. Appl. Phys., Part 2 43, L1524 (2004).
32. C.-L. Wu, J.-C. Wang, M.-H. Chan, T. T. Chen, and S. Gwo, Heteroepitaxy of GaN on Si(111) realized with a coincident-interface AlN/β-Si3N4(0001) double-buffer structure, Appl. Phys. Lett. 83, 4530 (2003).
33. N. Grandjean, M. Leroux, M. Laügt, and J. Massies, Gas source molecular beam epitaxy of wurtzite GaN on sapphire substrates using GaN buffer layers, Appl. Phys. Lett. 71, 240 (1997).
34. T. Detchprohm, K. Hiramatsu, K. Itoh, and I. Akasaki, Relaxation Process of the Thermal Strain in the GaN/α-Al2O3 Heterostructure and Determination of the Intrinsic Lattice Constants of GaN Free from the Strain, Jpn. J. Appl. Phys., Part 2 31, L1454 (1992).
35. P. Perlin, C. Jauberthiecarillon, J. P. Itie, A. S. Miguel, I. Grzegory, and A. Polian, Raman scattering and x-ray-absorption spectroscopy in gallium nitride under high pressure, Phys. Rev. B 45, 83 (1992).
36. C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J. W. Ager, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, Strain-related phenomena in GaN thin films, Phys. Rev. B 54, 17745 (1996).
37. M. A. Reshchikov and H. Morkoç, Luminescence properties of defects in GaN, J. Appl. Phys. 97, 061301 (2005).
38. M. Leroux, N. Granjean, B. Beaumount, G. Nataf, F. Semond, J. Massies, and P. Gibart, Temperature quenching of photoluminescence intensities in undoped and doped GaN, J. Appl. Phys. 86, 3721 (1999).
39. E. Calleja, M. A. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, and K. Ploog, Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy, Phys. Rev. B 62, 16826 (2000).
40. M. A. Reshchikov, D. Huang, L. He, H. Morkoç, J. Jasinski, Z. Liliental-Weber, S. S. Park, and K. Y. Lee, Manifestation of edge dislocations in photoluminescence of GaN, Physica B 367, 35 (2005).
41. G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78−4.77 eV) by spectroscopic ellipsometry and the optical transmission method, Appl. Phys. Lett. 70 3209 (1997).
42. T. Kawashima, H. Yoshikawa, S. Adachi, S. Fuke, and K. Ohtsuka, Optical properties of hexagonal GaN, J. Appl. Phys. 82, 3528(1997).
43. D. E. Aspnes, Optical properties of thin-films, Thin Solid Films 89, 249 (1982).
44. J. Y. Kim, T. Gessmann, E. F. Schubert, J.-Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, GaInN lightemitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer, Appl. Phys. Lett. 88, 013501 (2006).
45. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures, Nat. Nanotechnol. 2, 770 (2007).
46. H.-Y. Chen, H.-W. Lin, C.-H. Shen, and S. Gwo, Structure and photoluminescence properties of epitaxially oriented GaN nanorods grown on Si(111) by plasma-assisted molecular-beam epitaxy, Appl. Phys. Lett. 89, 243105 (2006).
Chapter 4
47. M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto and K.Kishino, Self-organization of GaN/Al0.18Ga0.82N multi-layer nano-columns on (0001)Al2O3 by RF molecular beam epitaxy for fabricating GaN quantum disks, J. Cryst. Growth 189-190, 138 (1998).
48. Y. S. Park, S. H. Lee, J. E. Oh and T. W. Kang, Self-assembled GaN nano-rods grown directly on (111)Si substrates: Dependence on growth conditions, J. Cryst. Growth 282, 313 (2005).
49. H.-Y. Chen, H.-W. Lin, C.-Y. Wu, W.-C. Chen, J.-S. Chen, and S. Gwo, Gallium nitride nanorod arrays as low-refractive-index transparent media in the entire visible spectral region, Opt. Express 16, 8106 (2008).
50. H.-Y. Chen, Y.-C. Yang, H.-W. Lin, S.-C. Chang, and S. Gwo, Polarized photoluminescence from single GaN nanorods: Effects of optical confinement, Opt. Express 16, 13465 (2008).
Chapter 5
51. E. F. Schubert and J. K. Kim, Solid-State Light Sources Getting Smart, Science 308, 1274 (2005).
52. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting, J. Disp. Technol. 3, 160 (2007).
53. C. J. Humphreys, Solid-State Lighting, MRS Bull. 33, 459 (2008).
54. T. Mukai, M. Yamada, and S. Nakamura, Characteristics of InGaN-Based UV/Blue/Green/Amber/Red Light-Emitting Diodes, Jpn. J. Appl. Phys., Part 1 38, 3976 (1999).
55. V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, and P. Lugli, Effects of macroscopic polarization in III-V nitride multiple quantum wells, Phys. Rev. B 60, 8849 (1999).
56. P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes, Nature 406, 865 (2000).
57. H. Masui, S. Nakamura, S. P. DenBaars, and U. K. Mishra, Nonpolar and Semipolar III-Nitride Light-Emitting Diodes: Achievements and Challenges, IEEE Trans. Electron Devices 57, 88 (2010).
58. M. Yamada, Y. Narukawa, and T. Mukai, Phosphor Free High-Luminous-Efficiency White Light-Emitting Diodes Composed of InGaN Multi-Quantum Well, Jpn. J. Appl. Phys., Part 2 41, L246 (2002).
59. C. -F. Huang, C. -F. Lu, T. -Y. Tang, J. -J. Huang, and C. C. Yang, Phosphor-free white-light light-emitting diode of weakly carrier-density-dependent spectrum with prestrained growth of InGaN/GaN quantum wells, Appl. Phys. Lett. 90, 151122 (2007).
60. M. Funato, K. Hayashi, M. Ueda, Y. Kawakami, Y. Narukawa, and T. Mukai, Emission color tunable light-emitting diodes composed of InGaN multifacet quantum wells, Appl. Phys. Lett. 93, 021126 (2008).
61. B. Damilano, A. Dussaigne, J. Brault, T. Huault, F. Natali, P. Demolon, P. De Mierry, S. Chenot, and J. Massies, Monolithic white light emitting diodes using a (Ga,In)N/GaN multiple quantum well light converter, Appl. Phys. Lett. 93, 101117 (2008)
62. H.-M. Kim, Y.-H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, High-Brightness Light Emitting Diodes Using Dislocation-Free Indium Gallium Nitride/Gallium Nitride Multiquantum-Well Nanorod Arrays, Nano Lett. 4, 1059 (2004).
63. E. Calleja, J. Ristić, S. Fernández-Garrido, L. Cerutti, M. A. Sánchez-García, J. Grandal, A. Trampert, U. Jahn, G. Sánchez, A. Griol, and B.Sánchez, Growth, morphology, and structural properties of group-III-nitride nanocolumns and nanodisks, Phys. Status Solidi B 244, 2816 (2007).
64. T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, Complete composition tunability of InGaN nanowires using a combinatorial approach, Nature Mater. 6, 951 (2007).
65. F. Qian, S. Gradečak, Y. Li, C.-Y. Wen, and C. M. Lieber, Core/Multishell Nanowire Heterostructures as Multicolor, High-Efficiency Light-Emitting Diodes, Nano Lett. 5, 2287 (2005).
66. K. Kishino, A. Kikuchi, H. Sekiguchi, and S. Ishizawa, InGaN/GaN nanocolumn LEDs emitting from blue to red, Proc. SPIE 6473, 64730T (2007).
67. K. Okamoto and Y. Kawakami, High-Efficiency InGaN/GaN Light Emitters Based on Nanophotonics and Plasmonics, IEEE J. Sel. Top. Quantum Electron. 15, 1199 (2009).
68. Y. Kawakami, A. Kaneta, L. Su, Y. Zhu, K. Okamoto, M. Funato, A. Kikuchi, and K. Kishino, Optical properties of InGaN/GaN nanopillars fabricated by postgrowth chemically assisted ion beam etching, J. Appl. Phys. 107, 023522 (2010).
69. H.-W. Lin, Y.-J. Lu, H.-Y. Chen, H.-M. Lee, and S. Gwo, InGaN/GaN nanorod array white light-emitting diode, Appl. Phys. Lett. 97, 073101 (2010).
Chapter 6
70. V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap, phys. stat. sol. (b) 229, R1 (2002).
71. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, Unusual properties of the fundamental band gap of InN, Appl. Phys. Lett. 80, 3967 (2002).
72. B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels, Phys. Rev. B 69, 115216 (2004).
73. S. Gwo, C.-L.Wu, C.-H. Shen, W.-H .Chang, T. M. Hsu, J.-S. Wang and J.-T. Hsu, Heteroepitaxial growth of wurtzite InN films on Si(111) exhibiting strong near-infrared photoluminescence at room temperature, Appl. Phys. Lett. 84, 3765 (2004).
74. A. A. Klochikhin, V. Yu. Davydov, V. V. Emtsev, A. V. Sakharov, V. A. Kapitonov, B. A. Andreev, H. Lu, and W. J. Schaff, Acceptor states in the photoluminescence spectra of n-InN, Phys. Rev. B 71, 195207 (2005).
75. H. Ahn, C.-H. Shen, C.-L. Wu, and S. Gwo, Spectroscopic ellipsometry study of wurtzite InN epitaxial films on Si(111) with varied carrier concentrations, Appl. Phys. Lett. 86, 201905 (2005).
76. C. H. Liang, L. C. Chen, J. S. Hwang, K. H. Chen, Y. T. Hung, and Y. F. Chen, Selective-area growth of indium nitride nanowires on gold-patterned Si(100) substrates, Appl. Phys. Lett. 81, 22 (2002).
77. Z. H. Lan, W. M. Wang, C. L. Sun, S. C. Shi, C. W. Hsu, T. T. Chen, K. H. Chen, C. C. Chen, Y. F. Chen, and L. C. Chen, Growth mechanism, structure and IR photoluminescence studies of indium nitride nanorods, J. Cryst. Growth 269, 87 (2004).
78. M. C. Johnson, C. J. Lee, E. D. Bourret-Courchesne, S. L. Konsek, S. Aloni, W. Q. Han, and A. Zettl, Growth and morphology of 0.80 eV photoemitting indium nitride nanowires, Appl. Phys. Lett. 85, 5670 (2004).
79. L.-W. Yin, Y. Bando, D. Golberg, and M.-S. Li, Growth of Single-Crystal Indium Nitride Nanotubes and Nanowires by a Controlled-Carbonitridation Reaction Route, Adv. Mater. 16, 1833 (2004).
80. S. Luo, W. Zhou, W. Wang, Z. Zhang, L. Liu, X. Dou, J. Wang, X. Zhao, D. Liu, Y. Gao, L. Song, Y. Xiang, J. Zhou, and S. Xie, Template-free synthesis of helical hexagonal microtubes of indium nitride, Appl. Phys. Lett. 87, 063109 (2005).
81. T. Stoica, R. Meijers, R. Calarco, T. Richter, and H. Lüth, MBE growth optimization of InN nanowires, J. Cryst. Growth 290, 241 (2006).
82. H. Lu, W. J. Schaff, L. F. Eastman, and C. E. Stutz, Surface charge accumulation of InN films grown by molecular-beam epitaxy, Appl. Phys. Lett. 82, 1736 (2003).
83. I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, and W. J. Schaff, Intrinsic Electron Accumulation at Clean InN Surfaces, Phys. Rev. Lett. 92, 036804 (2004).