簡易檢索 / 詳目顯示

研究生: 林洪緒
論文名稱: 閉迴路供應鏈中考量多期及不可拆單情況下之最佳生產組合
Optimal Periodical Production Mix with Inseparable Orders in a Closed Loop Supply Chain System
指導教授: 王小璠
口試委員: 張國華
溫于平
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 77
中文關鍵詞: 閉迴路供應鏈再製造多訂單多期生產規劃缺貨補貨模糊機會限制模型
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生產規劃在製造業裡一直是個相當重要的議題。藉由良好的生產規劃可幫助公司減少不必要的成本以及增加生產利潤。本研究考慮一中期生產規劃,零售商們在期初時會給予生產者每一期的訂單。由於產能限制,生產者必須在基於利潤最大化的原則下決定接受以及拒絕哪些訂單。生產者必須考慮兩個問題: 即(1)生產者必須接受那些訂單,以及(2)決定每一期要分配多少產品給每一位零售商。為了解決上述問題,本研究提出一整數規劃模型,目標即是在產能限制以及缺貨補貨策略的可行性下考量多期多訂單並建立一最佳生產規劃以使得淨利潤最大化。此外,由於需求之不確定性,本研究將應用模糊集合論的概念將零售商對需求以自然語言表達所產生的模糊不確定性納入原整數線性規劃模型,以提供決策者在不同風險參數下之最佳生產方式。兩種不同數學模型的數據分析將個別提供在不同章節之中。本研究除了能夠提供傳統生產規劃模型所提供之資訊外,亦能提供決策者該接受哪些零售商之訂單需求,以及如何在多期數規劃中分配其產品給零售商。


    Production planning, which allows the producer to manage all production activities efficiently, is a major issue in manufacturing/processing industries. A good plan helps the company lower down its expenses and/or increase the profit. This study considers a medium-term production planning problem in which a producer receives several periodic orders from multiple retailers at the beginning of planning horizon. Due to the capacity limit of the production system, the producer needs to reject some orders based on profit maximization principle. The producer faces two questions: 1) which order the producer should accept, and 2) when the products need to be allocated to the retailers. To solve these problems, we propose an integer programming model. Furthermore, due to the demand uncertainty, Fuzzy Set Theory is applied to construct a Fuzzy Chance-Constrained Production Mix Model so that the producer’s risk attitude and preference can be adopted to address uncertainty issue. Numerical examples for deterministic and uncertain cases are provided for illustration. The results of this study can help producers deal with a more realistic environment.

    TABLE OF CONTENT TABLE OF CONTENT II ABSTRACT…………………………………………………………………………. IV 中文摘要……………………………………………………………………………. V ACKNOWLEDGMENT VI FIGURE AND TABLE CAPTIONS VII LIST OF NOTATIONS VII CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURE REVIEW 3 2.1 Characteristics of Production Planning (Karimi et al, 2003) 3 2.2 Remanufacturing and Closed Loop Supply Chain 6 2.3 Fuzzy Approach to Resolving Uncertainty 9 2.3.1 Fuzzy Set Theory 9 2.3.2 Fuzzy Production Planning Models 13 2.3.3 Fuzzy Chance-Constrained Programming Model 13 2.4 Concluding Remarks 17 CHAPTER 3 PROPOSED DETERMINISTIC MODEL 18 3.1 Problem Statement 18 3.2 Model Formulation 20 3.2.1 Assumption 20 3.2.2 List of Notations 21 3.2.3 Proposed Production Mix Model 22 3.3 Alternative Optimal Allocation Strategy 25 3.4 The Reduced PMM 27 3.5 Numerical Example and Analysis 29 3.5.1 Numerical Example for PMM 29 3.5.2 Analysis of Minimal Acceptance Ratio for Managerial Insight 34 3.5.3 Numerical Example for Reduced PMM 35 3.6 Concluding Remarks 38 CHAPTER 4 FUZZY PRODUCTION MIX MODEL 40 4.1 Fuzzy Production Mix Model 40 4.2 The Proposed Fuzzy Chance-Constrained Production Mix Model 42 4.2.1 Assumption of M Lamda Measure Formulation 43 4.2.2 Transformation of Fuzzy Constraints into M Measure Constraints 43 4.2.3 Property of M Lamda Measure for Uncertain Event 49 4.2.4 Assumption of Modelling FCCPMM 50 4.2.5 Modeling FCCPMM 51 4.2.6 Parameter Analysis 54 4.3 Numerical Example 55 4.4 Concluding Remarks 61 CHAPTER 5 SUMMARY AND CONCLUSION WITH FUTURE STUDY 62 REFERENCES……………………………………………………………………… 65 APPENDIX A……………………………………………………………………… 68 APPENDIX B……………………………………………………………………... 71 APPENDIX C……………………………………………………………..………. 73 APPENDIX D……………………………………………………….………………. 76

    Feng, X., and Gao, J., A two-stage production planning model in fuzzy decision systems, World Journal of Modelling and Simulation, 2, No.5, 290-296, 2006.
    Golany, B., Yang, J. and Yu, G., Economic lot-sizing with remanufacturing options, IIE Transactions, 33, 995-1003, 2001.
    Guide, Jr., V.D.R., Harrison, T.P., and Van Wassenhove, L.N., The challenge of closed-loop supply chains. Interfaces 33, 3–6, 2003a.
    Guillaume, R., Kobylanski, P., and Zielinski, P., Production Planning with Uncertain Demands, IEEE International Conference on Fuzzy Systems, June 27-30, 2011, Taipei, Taiwan.
    Ijomah, W.L., Childe, S., and McMahon, C., Remanufacturing: A key strategy for sustainable development In: Proceedings of the 3rd International Conference on Design and Manufacture for Sustainable Development, Cambridge University Press ISBN 1-86058-470-5, 2004.
    Karimi, B., and Fatemi Ghomi, S.M.T., Wilson, J.M., The capacitated lot sizing problem: a review of models and algorithms, The International Journal of Management Science, 31, 365-378, 2003.
    Klir, G.J., Clair, Ute H. St., and Yuan, B., Fuzzy set theory: foundations and applications, Upper Saddle River, NJ : Prentice Hall, 1997.
    Lund, R.T., Hauser, W.M., Remanufacturing-An American Perspective, ICRM2010-Green Manufacturing, Ningbo, China, 2010.
    Pan, Z., Tang, J. and Liu, O., Capacitated Dynamic Lot Sizing Problems in Closed Loop Supply Chain, European Journal of Operational Research, 198, 810-821, 2009.
    Phruksaphanrat, B., Ohsato, A., and Yenradee, P., Aggregate Production Planning with Fuzzy Demand and Variable System Capacity Based on Theory of Constraints Measures, International Journal of Industrial Engineering, 18(5), 219-231, 2011.
    Richter, K., and Sombrutzki, M., Remanufacturing planning for the reverse Wagner/Whitin models, European Journal of Operational Research, 121, 304-315, 2000.
    Sutherland, J.W., Adler, D.P., Haapala, K.R., and Kumar, V., A comparison of manufacturing and remanufacturing energy intensities with application to diesel engine production, CIRP Annals ─Manufacturing Technology, 57, 5-8, 2008.
    Wang, H.F., and Fu, C.Y., Batch Production Plan for Periodic Demands with Uncertain Recycling Rate in a Closed-Loop Supply System, Supply Chain Management Under Fuzziness, Studies in Fuzziness and Soft Computing 313, DOI: 10.1007/978-3-642-53939-8_16 , Springer-Verlag Berlin Heidelberg 2014.
    Wu, H.C., Generalized Extension Principle, Fuzzy Optim Decis Making, 9, 31–68, 2010.
    Yang, L., and Iwamura, K., Fuzzy Chance-Constrained Programming with Linear Combination of Possibility Measure and Necessity Measure, Applied Mathematical Sciences, 2, No 46, 2271-2288, 2008.
    Zadeh, L.A., Fuzzy Sets, Information and Control, 8, 338-353, 1965.
    Zadeh, L.A., The Concept of a Linguistic Variable and its Application to Approximate Reasoning-I, Information and Science, 8, 199-249, 1975.
    Zadeh, L.A., Fuzzy Sets as a Basis for Theory of Possibility, Fuzzy Systems 100 Supplement, 9-34, 1977.
    Zimmermann, H.J., Fuzzy Set Theory ─ and Its Applications”, Kluwer-Nijhoff Publishing, 1985.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE