研究生: |
陳思靜 Chen, Szu-Ching |
---|---|
論文名稱: |
可緩釋薑黃素之明膠支架做為角膜內皮細胞移植之載體 Gelatin-based Scaffold with Sustained Curcumin Release as a Carrier for Delivery of Corneal Endothelial Cells |
指導教授: |
黃玠誠
Huang, Chieh-Cheng |
口試委員: |
賴柏亮
Lai, Bo-Liang 陳宏吉 Chen, Hong-Ji 薛詒仁 Xue, Yi-Ren 蕭慧怡 Hsiao, Hui-Yi |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 生物醫學工程研究所 Institute of Biomedical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 40 |
中文關鍵詞: | 角膜內皮 、角膜移植 、薑黃素 、複合微米粒子 |
外文關鍵詞: | corneal endothelium, corneal transplantation, curcumin, hybrid microparticles |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
成人的角膜內皮細胞不具有再生能力。當角膜內皮細胞數量顯著減少會導致內皮層之排水功能失調,進而導致角膜水腫和不透明,嚴重影響視力。臨床上,角膜移植仍然是目前改善患者視力的唯一解決方法,但其往往受限於捐贈來源不足。此外,即使完成手術,移植的角膜可能因其本身品質不佳或受贈者免疫排斥等因素,導致移植角膜的內皮細胞密度下降,進而使移植體功能下降,甚至移植失敗。因此,若能開發一新型組織工程支架,用於培養角膜內皮細胞並支持其轉移到前房,或可做為捐贈角膜之替代品,進而有效解決捐贈角膜短缺或降低手術失敗風險。本論文擬利用明膠做為角膜內皮細胞培養與移植的支架,結合包覆有薑黃素之藥物緩釋系統,期望能藉由薑黃素之抗氧化及促進細胞增生等特性,改善移植細胞的存活率,並進一步提升移植成功率。實驗中,我們以單乳化方式製備出包覆有薑黃素的脂質-聚乳酸-乙醇酸複合微米粒子,並將其分散至明膠支架內部。實驗結果顯示,與未經載體包覆的薑黃素比較起來,包覆有薑黃素之複合微米粒子能夠更有效地提升角膜內皮細胞株B4G12細胞的增生速度,並增加其抗氧化能力。將此複合微米粒子與明膠薄膜結合成為支架後,可發現B4G12細胞可順利在支架表面貼附生長。以上實驗結果證實,本研究成功開發一新型組織工程支架,可應用於角膜內皮細胞的培養與移植,並降低氧化壓力對細胞的傷害,未來或有應用於角膜內皮細胞移植的潛能。
Human corneal endothelial cells (CECs) possess extremely limited regenerative potential. Dramatic loss of CECs results in endothelial dysfunction, thus leading to corneal edema and opacity and can be sight-threatening. Currently, corneal transplantation remains the only solution to improve patients’ visual acuity. However, worldwide shortage of donors continues. Additionally, the endothelial density of the harvested donor cornea can be reduced owing to various factors and thereby less than the threshold required for transplantation. Typically, a high pre-operative endothelial cell density is required in order to offset the postoperative cell loss and ensure graft survival. Biomaterial-based culture platform with enhanced structural support may provide a route for increasing the cell density of donor corneas or engineering artificial corneas. In this work, a curcumin loaded lipid-poly(lactic-co-glycolic acid) hybrid microparticles (MPs) was developed and embedded into a thin gelatin membrane, thus becoming a scaffold that can release curcumin continuously. Our in vitro results demonstrated that the corneal endothelial cell line B4G12 cells could attach and proliferate actively on the surface of the as-prepared gelatin scaffold. Additionally, the viability of cells under oxidative stress could be improved significantly, which could be attributable to the released curcumin. These experimental data indicated that the developed gelatin-based scaffold with sustained curcumin release capability might have great potential to be employed for the cultivation and transplantation of CECs.
1. Beuerman, R.W. and L. Pedroza, Ultrastructure of the Human Cornea. Microscopy Research and Technique, 1996. 33(4): p. 320-335.
2. Chen, Z., et al., Biomaterials for Corneal Bioengineering. Biomedical Materials, 2018. 13(3): p. 27.
3. Palchesko, R.N., S.D. Carrasquilla, and A.W. Feinberg, Natural Biomaterials for Corneal Tissue Engineering, Repair, and Regeneration. Advanced Healthcare Materials, 2018. 7(16): p. 18.
4. Matthyssen, S., et al., Corneal Regeneration: A Review of Stromal Replacements. Acta Biomaterialia, 2018. 69: p. 31-41.
5. West-Mays, J.A. and D.J. Dwivedi, The Keratocyte: Corneal Stromal Cell with Variable Repair Phenotypes. International Journal of Biochemistry & Cell Biology, 2006. 38(10): p. 1625-1631.
6. Navaratnam, J., et al., Substrates for Expansion of Corneal Endothelial Cells towards Bioengineering of Human Corneal Endothelium. J Funct Biomater, 2015. 6(3): p. 917-45.
7. Stuart, A.J., et al., Descemet's Membrane Endothelial Keratoplasty (DMEK) Versus Descemet's Stripping Automated Endothelial Keratoplasty (DSAEK) for Corneal Endothelial Failure (Review). Cochrane Database of Systematic Reviews, 2018(6): p. 37.
8. Janson, B.J., et al., Glaucoma-Associated Corneal Endothelial Cell Damage: A Review. Survey of Ophthalmology, 2018. 63(4): p. 500-506.
9. Murphy, C., et al., Prenatal and Postnatal Cellularity of the Human Cornal Endothelium - A Quantitative Histologic-Study. Investigative Ophthalmology & Visual Science, 1984. 25(3): p. 312-322.
10. Bourne, W.M., L.R. Nelson, and D.O. Hodge, Central corneal endothelial cell changes over a ten-year period. Investigative Ophthalmology & Visual Science, 1997. 38(3): p. 779-782.
11. Smolin, G., R.A. Thoft, and C.H. Dohlman, Endothelial Function. The Cornea: Scientific Foundations and Clinical Practice, 1994. 3: p. 635-643.
12. Borboli, S. and K. Colby, Mechanisms of Disease: Fuchs' Endothelial Dystrophy. Ophthalmology Clinics, 2002. 15(1): p. 17-25.
13. Schrittenlocher, S., B. Bachmann, and C. Cursiefen, Impact of Donor Tissue Diameter on Postoperative Central Endothelial Cell Density in Descemet Membrane Endothelial Keratoplasty. Acta Ophthalmologica, 2019. 97(4): p. E618-E622.
14. Lai, J.Y., et al., Characterization of Cross-Linked Porous Gelatin Carriers and Their Interaction with Corneal Endothelium: Biopolymer Concentration Effect. Plos One, 2013. 8(1): p. 12.
15. Watanabe, R., et al., A Novel Gelatin Hydrogel Carrier Sheet for Corneal Endothelial Transplantation. Tissue Engineering Part A, 2011. 17(17-18): p. 2213-2219.
16. Rahman, I., S.K. Biswas, and P.A. Kirkham, Regulation of Inflammation and Redox Signaling by Dietary Polyphenols. Biochemical Pharmacology, 2006. 72(11): p. 1439-1452.
17. Maheshwari, R.K., et al., Multiple Biological Activities of Curcumin: A Short Review. Life Sciences, 2006. 78(18): p. 2081-2087.
18. Zhang, N., et al., Anti-Inflammatory Effect of Curcumin on Mast Cell-Mediated Allergic Responses in Ovalbumin-Induced Allergic Rhinitis Mouse. Cellular Immunology, 2015. 298(1-2): p. 88-95.
19. Liu, X.F., et al., Curcumin, A Potential Therapeutic Candidate for Anterior Segment Eye Diseases: A Review. Frontiers in Pharmacology, 2017. 8: p. 13.
20. Jensen, D.K., et al., Design of an Inhalable Dry Powder Formulation of DOTAP-modified PLGA Nanoparticles Loaded with siRNA. Journal of Controlled Release, 2012. 157(1): p. 141-148.
21. Sahana, D.K., et al., PLGA Nanoparticles for Oral Delivery of Hydrophobic Drugs: Influence of Organic Solvent on Nanoparticle Formation and Release Behavior In Vitro and In Vivo using Estradiol as a Model Drug. Journal of Pharmaceutical Sciences, 2008. 97(4): p. 1530-1542.
22. Khademi, F., et al., Formulation and Optimization of a New Cationic Lipid-Modified PLGA Nanoparticle as Delivery System for Mycobacterium tuberculosis HspX/EsxS Fusion Protein: An Experimental Design. Iranian Journal of Pharmaceutical Research, 2019. 18(1): p. 446-458.
23. Makadia, H.K. and S.J. Steven, Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers (Basel), 2011. 3(3): p. 1377-1397.
24. Siegel, S.J., et al., Effect of Drug Type on the Degradation Rate of PLGA Matrices. European Journal of Pharmaceutics and Biopharmaceutics, 2006. 64(3): p. 287-293.
25. Tapeinos, C., M. Battaglini, and G. Ciofani, Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. Journal of Controlled Release, 2017. 264: p. 306-332.
26. Z., L. and L. Z., Lipid–Polymer Hybrid Nanoparticles: Synthesis, Characterization and Applications. Nano LIFE, 2010. 01(01n02): p. 163-173.
27. Dave, V., et al., Lipid-polymer hybrid nanoparticles: Synthesis strategies and biomedical applications. Journal of Microbiological Methods, 2019. 160: p. 130-142.
28. Reis, C.P., et al., Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine-Nanotechnology Biology and Medicine, 2006. 2(1): p. 8-21.
29. Zhang, L.F., et al., Self-Assembled Lipid-Polymer Hybrid Nanoparticles: A Robust Drug Delivery Platform. Acs Nano, 2008. 2(8): p. 1696-1702.
30. Xu, H., et al., An Efficient Trojan Delivery of Tetrandrine by Poly(N-vinylpyrrolidone)-block-Poly(Epsilon-Caprolactone) (PVP-b-PCL) Nanoparticles Shows Enhanced Apoptotic Induction of Lung Cancer Cells and Inhibition of its Migration and Invasion. Int J Nanomedicine, 2014. 9: p. 231-42.
31. Seo, S.B., et al., Novel Multifunctional PHDCA/PEI Nano-Drug Carriers for Simultaneous Magnetically Targeted Cancer Therapy and Diagnosis via Magnetic Resonance Imaging. Nanotechnology, 2007. 18(47).
32. Skoog, D.A., F.J. Holler, and S.R. Crouch, Principles of Instrumental Analysis, 6th ed. brooks/cole:belmont. 2007.