簡易檢索 / 詳目顯示

研究生: 呂俊麟
Lu, Chun-Lin
論文名稱: 三維異質整合微系統晶片之可靠度分析
Reliability Analysis of 3D Heterogeneous Integrated Microsystem Chip
指導教授: 葉孟考
Yeh, Meng-Kao
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 120
中文關鍵詞: 三維異質整合微系統晶片可靠度分析熱應力分析加速熱循環分析田口法加速熱循環實驗
外文關鍵詞: 3D heterogeneous integration microsystem chip, reliability analysis, thermal stress analysis, thermal cycling analysis, Taguchi Method, Accelerated thermal cycling test
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 進行三維異質整合微系統晶片開發過程中,整體結構之可靠度分析是重要的一環。而建立可靠度之有限單元數值模擬,以了解幾何結構參數對可靠度之影響,並進一步改善晶片之壽命是為本文之目標。由於晶片中微機電元件結構複雜,模擬過程中通常會適度的簡化;模型的簡化是否對晶片分析結果造成影響則需進一步探討。
    本文首先針對不同三維異質整合晶片全域模型進行熱應力分析及加速熱循環分析;藉由分析結果說明簡化模型之合理性,以大幅減少分析時間,並評估其可靠度。接著,將不同內含單一微機電元件晶片之模型進行可靠度分析;對微掃描面鏡之晶片,提出熱-結構交替分析流程方法,以評估其於製程中所導致之熱預應力對此晶片結構之影響;也討論微型陀螺儀晶片模型簡化之合理性。並以上述分析結果為基礎,將簡化後微型陀螺儀晶片模型之封裝結構進行設計,討論改善晶片可靠度之可行性及提出封裝方面之建議。再以田口法進行最佳化設計分析,了解幾何結構參數對晶片可靠度之影響外,並得到最佳幾何參數組合,可提升微機電元件晶片之可靠度。文中也提出微型陀螺儀晶片與微掃描面鏡晶片之三種製作流程,並比較各種流程之優缺點。最後,再將製作完成之微型陀螺儀晶片進行加速熱循環實驗與分析結果相互驗證。本文所得結果可提供內含穿晶片導線三維異質整合晶片研發之封裝結構設計與晶片製備之參考。


    The reliability analysis of whole structure is an important part in the researching and developing process of 3D heterogeneous integration microsystem chip. And building the reliability of finite element analysis (FEA) simulation for figuring out the relationship between geometric paramaters and reliability; moreover, improving the life of chips are the purpose of this thesis. Generally, the finite element (FE) models are simplified appropriately in simulation process due to the complicated structure of MEMS (Micro Electronic Mechanical Systems) device in the chip; however, the simplified model whether affect the analysis results or not will need to be investigated.
    The thermal stress analysis and thermal cycling analysis for different 3D heterogeneous integration microsystem chip FE models were investgated in this thesis; the results indicated properly simplify models to reduce the computational time is beneficial for reliability analysis. And the reliability analysis for different MEMS device chip FE models were investigated; the thermal-structure analysis alternately process was proposed to estimate the effect of thermal prestress for micromirror chip; the rationality of simplified microgyroscope chip model was also discussed. Base on the results, the the packaging structure of simplified microgyroscope chip model was designed and the possibility of improving reliability and suggestions were proposed. Then the Taguchi Method was used to optimal design analysis for chip and the optimal combination of geometric parameters was captured. Finally, the analysis results were proved by thermal cycling test of microgyroscope chip. The results in this thesis can provide suggestions in packaging structure design for researching and developing 3D heterogeneous integration microsystem chip which was embedded through-silicon-via.

    中文摘要…………………………………………………………….... i 英文摘要……………………………………………………………... ii 誌謝………………………………………………………………….... iii 目錄 ……………………………………………………………… v 圖表目錄………………………………………………………….. viii 第一章 緒論……………………………………………………….…. 1 1.1研究動機…………………………………………………...... 1 1.2文獻回顧………………………………………………….…. 2 1.3研究主題………………………………………………….…. 7 第二章 有限單元分析與最佳化設計….………………...………..… 8 2.1有限單元分析…………………………………………….…. 8 2.1.1 熱傳分析…………………………………………….. 9 2.1.2 熱應力分析………………………………………….. 11 2.1.3熱疲勞分析……………………………………….…. 14 2.1.4 von Mises破壞準則…………………………………. 15 2.2 田口法……………………………………………………….. 16 2.2.1信號雜音比(Signal to Noise Ratio)…….…………….. 16 2.2.2 平均值分析…………………………….…………….. 17 第三章 有限單元分析…………………………………………….…. 19 3.1 三維異質整合晶片全域模型之熱應力分析….………….… 20 3.1.1 三維異質整合晶片全域模型熱應力分析邊界條件 與負載........................................................................... 21 3.2 三維異質整合晶片全域模型之加速熱循環分析………….. 21 3.2.1三維異質整合晶片全域模型之加速熱循環分析邊界 條件與負載……………………………………….….. 22 3.3 微掃描面鏡晶片之預應力模擬分析.…………………….… 23 3.3.1 微掃描面鏡晶片模型邊界條件與負載……….…….. 24 3.4 微型陀螺儀晶片模型之熱應力分析……………….…....…. 25 3.4.1微型陀螺儀晶片模型熱應力分析之邊界條件與負 載…………………………………………………..…. 26 3.5 微型陀螺儀晶片模型加速熱循環分析……………….……. 27 3.5.1 封裝結構設計之微型陀螺儀晶片簡化模型加速熱 循環分析…………………………...………................ 27 3.6 微型陀螺儀晶片簡化模型之田口法最佳化設計分析…...... 28 第四章 實驗設備與程序………………………………………….…. 30 4.1 實驗儀器……………………………………………………. 30 4.1.1 加熱器……………………………………………….. 30 4.1.2 操作平台…………………………………………….. 30 4.1.3光學顯微鏡…………………………………………… 31 4.1.4 熱循環測試機……………………………………….. 31 4.1.5 三用電表…………………………………………….. 31 4.2 微型陀螺儀與微掃描面鏡晶片製備………………………. 31 4.2.1 晶片製作流程一…………………………………….. 31 4.2.2 晶片製作流程二…………………………………….. 32 4.2.3 晶片製作流程三…………………………………….. 32 4.3 加速熱循環實驗……………………………………………. 33 第五章 結果與討論.…………………………….……………. 34 5.1三維異質整合晶片模型之熱應力分析……...…..………….. 34 5.1.1 Model 1-1與Model 1-2 之分析結果........................... 35 5.1.2 Model 1-2與Model 1-3 之分析結果…………...…… 36 5.2 三維異質整合晶片模型之加速熱循環分析……….….…… 38 5.2.1 三維異質整合晶片模組之可靠度評估……...……… 38 5.2.2 Model 2-1與Model 2-2 之分析結果……...………… 40 5.3 熱預應力對微掃描面鏡晶片模型之影響………………….. 41 5.3.1 考慮熱預應力之微掃描面鏡晶片模型分析結果…... 41 5.3.2 未考慮熱預應力之微掃描面鏡晶片模型分析結果 42 5.4 微型陀螺儀晶片模型Model 3-1與Model 3-2之熱應力分 析結果………………………………………….……...…... 43 5.5 微型陀螺儀晶片模型Model 3-1與Model 3-2之加速熱循 環分析結果…………………………………………………. 43 5.6 不同封裝結構設計之微型陀螺儀晶片簡化模型加速熱循 環分析結果……………………………................................. 44 5.6.1 不含底填膠之各種晶片簡化模型加速熱循環分析 結果…………………...……………………...…......... 44 5.6.2 含底填膠之各種晶片簡化模型加速熱循環分析結 果…………………...………………………...…......... 45 5.7 微型陀螺儀晶片簡化模型之田口法最佳化設計分析結果.. 47 5.8 加速熱循環實驗與分析結果驗證探討……………………. 48 第六章 結論..…………………..……………………………….……. 50 參考文獻………………………………………………………….…... 52 圖表……………………………………………………………….…... 58

    參考文獻
    1. R. R. Tummala, Fundamentals of Microsystems Packaging, McGraw-Hill, New York, 2001.
    2. C. W. Lin, H. A. Yang, W. C. Wang and W. Fang, “Implementation of three-dimensional SOI-MEMS wafer-level packaging using through-wafer interconnections,” Journal of Micromechanics and Microengineering, Vol. 17, pp. 1200-1205, 2007.
    3. C. W. Lin, C. P. Hsu, H. A. Yang W. C Wang and W. Fang, “Implementation of SOG Devices with embedded through-wafer silicon vias using a glass reflow process for wafer-level 3D MEMS integration,” in Proceedings of 21st IEEE International Conference on Micro Electro Mechanical Systems, pp. 802-805, January 13-17, 2008.
    4. J. U. Knickerbocker, C. S. Patel, P. S. Andry, C. K. Tsang, L. P. Buchwalter, E. J. Sprogis, H. Gan, R. R. Horton, R. J. Polastre, S. L. Wright and J. M. Cotte, “3-D Silicon Integration and Silicon Packaging Technology Using Silicon Through-Vias,” IEEE Journal of Solid-State Circuits, Vol. 41, No. 8, pp. 1718-1725, 2006.
    5. M. Tomisaka, H. Yonemura, M. Hoshino, K Takahashi, T. Okamura, J. J. Sun and K.Kondo, “Electroplating Cu Fillings for Through-Vias for Three-Dimensional Chip Stacking,” IEEE Electronic Components and Technology Conference, 2002.
    6. N. Ranganathan, K. Prasad, N. Balasubramanian, Z. Qiaoer and S. C. Hwee, “High Aspect Ratio Through-Wafer Interconnect for Three Dimensional Integrated Circuits,” IEEE Electronic Components and Technology Conference, pp. 343-348, 2005.
    7. P. A. Miranda and A. J. Moll, “Thermo-Mechanical Characterization of Copper Through-Wafer Interconnects,” IEEE Electronic Components and Technology Conference, pp. 844-848, 2006.
    8. J. Zhang, M. O. Bloomfield, J. Q. Lu, R. J. Gutmann and T. S. Cale, “Modeling Thermal Stresses in 3-D IC Interwafer Interconnects,” IEEE Transactions on Semiconductor Manufacturing, Vol. 19, No. 4, pp. 437-448, 2006.
    9. N. Ranganathan, K. Prasad, N. Balasubramanian and K. L. Pey “A study of thermo-mechanical stress and its impact on through-silicon vias,” Journal of Micromechanics and Microengineering, 2008.
    10. T. Falat, K. Friedel, N. Marenco and S. Warnat, “TSV constraints related to temperature excursion, pressure during molding, materials used and handling loads,” Microsystems Technology, pp. 181-190, 2008.
    11. M. C. Lee, S. J. Kang, K. D. Jung, S. H. Choa and Y. C. Cho “A high yield rate MEMS gyroscope with a packaged SiOG process,” Journal of Micromechanics and Microengineering, 2005.
    12. S. H. Choa, “Reliability of vacuum packaged MEMS gyroscopes,” Microelectronics Reliability, pp. 361-369, 2005.
    13. G. Liu, A. Wang, T. Jiang, J. Jiao, and J. B. Jang, “Effects of environmental temperature on the performance of a micromachined gyroscope,” Microsystems Technology, pp. 199-204, 2007.
    14. Q. Shi, Y. Su, A. P. Qiu and X. H. Zhu, “Study on Stress of Silicon Micromachined Gyroscope,” Chinese Journal of Electron Devices, Vol. 30, No. 6, pp. 2294-2296, 2007.
    15. A. Wolter, H. Korth, H. Schenk, H. Lakner, “Temperature stability of the frequency of a resonant micro scanning mirror,” IEEE/LEOS International Conference, pp.56-56, 2003.
    16. H. Miyajima, “Development of a MEMS electromagnetic optical scanner for a commercial laser scanning microscope,” Journal of Microlithography, Microfabrication, and Microsystems, Vol. 3, No.2, pp.348-357, 2004.
    17. J. H. L. Pang, D.Y.R. Chong and T. H. Low, “Thermal Cycling Analysis of Flip-Chip Solder Joint Reliability,” IEEE Transactions on Components and Packaging Technologies, Vol. 24, No. 4, 2001.
    18. J. H. L. Pang, K. H. Tan, X. Shi and Z. P. Wang, “Thermal Cycling Aging Effects on Microstructual and Mechanical Properties of a Single PBGA Solder Joint Specimen,” IEEE Transactions on Components and Packaging Technology, Vol. 24, pp. 10-15, 2001.
    19. S. Y. Teng and M. Brillhart, “Reliability Assessment of a High CTE CBGA for High Availability Systems,” IEEE Electronic Component and Technology Conference, pp. 611-616, 2002.
    20. T. T. Yan, M. Lim, N. H. Shen, X. Barato, D. Kaire and Z. Zhaowei, “Design Analysis of Solder Joint Reliability for Stacked Die Mixed Flip-Chip and Wirebond BGA,” IEEE Electrical Packaging Technology Conference, pp. 391-397, 2002.

    21. B. A. Zahn, “Finite Element Based Solder Joint Fatigue Life Predictions for a Same Die Size Stacked Chip Scale Ball Grid Array Package,” IEEE Electronics Manufacturing Technology Symposium, pp. 274-284, 2002.
    22. H. U. Akay, Y. Liu and M. Rassaian, “Simplification of Finite Element Models for Thermal Fatigue Life Prediction of PBGA Packages,” Journal of Electronic Packaging ASME, Vol. 125, pp. 347-353, 2003.
    23. Z. Zhong and P. K. Yip, “Finite element analysis of a three-dimensional package,” Soldering and Surface Mount Technology, Vol. 15, pp. 21-25, 2003.
    24. Y. Cheng, G. Xu, D. Zhu, X. Lin, and L. Luo, “Thermal Mechanical Reliability Study of High I/Os Flip Chip on Laminated Substrate Based on FEA, RSM and Interfacial Fracture Mechanics,” 6th International Conference on Electronic Packaging Technology, pp. 459-466, 2005.
    25. K. O. Lee, K. E. Ong, K. N. Seetharamu, I. A. Azid and G. A. Quadir, “Application of artificial intelligence for the determination of package parameters for a desired solder joint fatigue life,” Microelectronics International, Vol. 23, No. 2, pp. 37-44, 2006.
    26. T. H. Wang, C. C. Lee, Y. S. Lai and Y. C. Lin, “Transient Thermal Analysis for Board-Level Chip-Scale Packages Subjected to Coupled Power and Thermal Cycling Test Conditions,” ASME Journal of Electronic Packaging, Vol. 128, pp. 281-284, 2006.
    27. X. Fan, M. Pei and P. K. Bhatti, “Effect of Finite Element Modeling Techniques on Solder Joint Fatigue Life Prediction of Flip-Chip BGA Packages,” IEEE Electronic Components and Technology Conference, 2006.
    28. Y. C. Shiah, “Computer Simulation of the Thermal Fatigue Life of WLCSP,” Journal of Science and Engineering Technology, Vol. 3, No. 2, pp. 19-25, 2007.
    29. N. Tanaka, T. Sato, Y. Yamaji, T. Morifuji, M. Umemoto, and K.Takahashi, “Mechanical Effects of Copper Through-Vias in a 3D Die-Stacked Module,” IEEE Electronic Components and Technology Conference, 2002.
    30. S. W. Yoon, D. Witarsa, S. Y. L. Lim, V. Ganesh, A. G. K. Viswanath, T. C. Chai, K. O Navas and V. Kripesh, “Reliability Studies of a Through Via Silicon Stacked Module for 3D Microsystem Packaging,” IEEE Electronic Components and Technology Conference, 2006.
    31. W. R. Jong, S. C. Chen, H. C. Tsai, C. C. Chiu and H. T. Chang, “The Geometrical Effects of Bumps on the Fatigue Life of Flip-chip Packages by Taguchi Method,” Journal of Reinforced Plastics and Composites, Vol. 25, No. 1, pp.99-114, 2006.
    32. N. Khan, V. S. Rao, S. Lim, H. S. We, V. Lee, Z. X. Wu, Y. Rui, L. Ebin, Ranganathan, TC Chai, V. Kripesh and J. Lau, “Development of 3D Silicon Module with TSV for System in Packaging,” IEEE Electronic Components and Technology Conference, 2008.
    33. S. W. Yoon, S. Y. L. Lim, A. G. K. Viswanath, S. Thew, T. C. Chai and V. Kripesh, “Reliability of a Silicon Stacked Module for 3-D SiP Microsystem,” IEEE Transactions on Advanced Packaging, Vol. 31, No. 1, 2008.
    34. P. Ramm, M. J. Wolf, A. Klumpp, R. Wieland, B. Wunderle and B. Michel, “Through Silion Via Technology-Processes and Reliability for Wafer-Level 3D System Integreation,” IEEE Electronic Components and Technology Conference, 2008.
    35. C. S. Selvanayagam, J. H. Lau, X. Zhang, S. K. W. Seah, K. Vaidyanathan and T. C. Chai, “Nonlinear Thermal Stress/Strain Analyses of Copper Filled TSV (Through Silicon Via) and their Flip-Chip Microbumps,” IEEE Electronic Components and Technology Conference, 2008.
    36. ANSYS Release 12.1, ANSYS, Inc., PA, 2010.
    37. R. D. Cook, D. S. Malkus, M. E. Plesha and R. J. Witt, Concepts and Applications of Finite Element Analysis, 4th ed., John Wiley & Sons, Inc., Danvers, 2002.
    38. L. J. Segerlind, Applied Finite Element Analysis, 2nd, Wiley, New York,1984.
    39. ANSYS User’s Manual, ANSYS Inc.
    40. 康淵,陳信吉,ANSYS入門,全華科技圖書股份有限公司,台北,2003。
    41. 江國寧,微電子系統封裝基礎理論與應用技術,滄海書局,台中,2006。
    42. J. H. Lienhard, A Heat Transfer Textbook, 2nd ed., Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1987.
    43. G. R. Blackwell, The Electronic Packaging Handbook, CRC Press, Boca Raton, 2000.
    44. Release 10.0 Documentation for ANSYS: Theory Reference, 2005.
    45. J. M. Gere, Mechanics and Materials, Springer-Verlag, 1994.
    46. J. A. Collins, Failure of Materials in Mechanical Design, John Wiley & Sons, 1981.

    47. J. H. Lau, “Solder Joint Reliability of Flip Chip and Plastic Ball Grid Array Assemblies Under Thermal, Mechanical, and Vibration Conditions,” IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part B, Vol. 19, No. 4, pp. 728-735, 1996.
    48. V. Gektin, A. Bar-Cohen, and J. Ames, “Coffin-Manson Fatigue Model of Underfilled Flip-Chips,” IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A, Vol. 20, No. 3, pp. 317-326, 1997.
    49. H. D. Solomon, “Fatigue of 60/40 Solder,” IEEE Transactions on Components, Hybirds and Manufacturing Technology, pp. 423-432, 1986.
    50. 黎正中譯,穩健設計之品質工程,台北圖書有限公司,台北,1993。
    51. 蘇建安,散熱強化型塑封球柵陣列電子構裝之分析與設計,碩士論文,國立清華大學動力機工程學系,新竹,1999年。
    52. http://www.memsnet.org/material/
    53. M. D. Brown, S. B. Singh, A. P. Malshe, M. H. Gordon, W. F. Schmidt and W. D. Brown, “Thermal and Mechanical Analysis for High-Power GaAs Flip-Chips on CVD Diamond Substrates,” Diamond and Related Materials, Vol. 8, pp. 1927-1935, 1999.
    54. 沈信安,四方扁平薄型電子構裝(TQFP)之散熱效能分析,碩士論文,國立清華大學動力機械工程學系,新竹,2001。
    55. 陳精一,ANSYS7.0電腦輔助工程實務分析,全華圖書,台北,2004。
    56. R. Iannuzzelli, “Predicting Plated-Through-Hole Reliability in High Temperature Manufacturing Processes,” IEEE Electronic Components and Technology Conference, pp. 410-421, Atlanta, GA, USA, 1991.
    57. D. E. Riemer, “Prediction of temperature cycling life for SMT solder joints on CTE-mismatched substrate,” IEEE Electronic Components and Technology Conference, pp. 418–425, 1990.
    58. JESD22-A104C, “Temperature Cycling,” JEDEC Standard, May, 2005.
    59. M. K. Yeh and T. M. Hong, “Thermal Stress Analysis and Optimization of 3D Chip Module Using Through-Wafer Vias,” Proceedings of the 4th Asia Pacific Conference on Transducers and Micro/Nano Technologies, APCOT 4, Tainan, Taiwan, ROC, Paper No. 295, 2008.
    60. B. Z. Hong and L. G. Burrell, “Modeling Thermally Induced Viscoplastic Deformation and Low Cycle Fatigue of CBGA Solder Joint in a Surface Mount Package,” IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A, Vol. 20, No. 3, pp. 280-285, 1997.
    61. R. Liu, H. Wang, X. Li, G. Ding and C. Yang, “A Micro-Tensile Method for Measuring Mechanical Properties of MEMS Materials,” Journal of Micromechanics and Microengineering, Vol. 18, pp. 1-7, 2008.
    62. C. C. Lee, S. M. Chang and K. N. Chiang, “Sensitivity Design of DL-WLCSP Using DOE with Factorial Analysis Techonology,” IEEE Transaction on Advanced packaging, Vol. 30, No. 1, pp. 44-55, 2007.
    63. 劉振南,無底膠新型覆晶封裝結構之設計與可靠度分析,碩士論文,國立清華大學動力機工程學系,新竹,2001年。
    64. 洪東銘,內嵌穿晶片導線三維晶片模組之熱應力分析及最佳化,國立清華大學動力機工程學系,新竹,2008年。
    65. F. Zhu, H. Zhang, R. Guan and S. Liu, “Investigation of microstructures and tensile properties of a Sn-Cu lead-free solder alloy,” Journal of Materials Science: Materials in Electronics, Vol. 17, pp. 379-384, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE