簡易檢索 / 詳目顯示

研究生: 杜亞容
Tu, Ya-Jung
論文名稱: 切換式音頻放大器之開發及其波形控制
ON THE DEVELOPMENT OF A SWITCH MODE AUDIO AMPLIFIER AND ITS WAVEFORM CONTROL
指導教授: 鐘太郎
Jong, Tai-Lang
廖聰明
Liaw, Chang-Ming
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 100
中文關鍵詞: D類放大器脈寬調制變頻器波形控制雙可調度反馳式轉換器功因校正
外文關鍵詞: Class-D amplifier, PWM inverter, waveform control, two-degrees-of-freedom, flyback converter, power factor correction
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在開發一音響用切換式D類音頻放大器及從事其強健波形追控。為利於從事所研擬之研究,首先探究體會一些基本實務,包含揚聲器之結構與其等效電路模型、D類放大器之電力電路及控制策略、及音響系統之關鍵規格。另外,一些市售之D類放大器亦予以探究,以了解其組成特徵及功能。
    其次,設計建構一脈寬調制單相全橋式變頻器,藉由適當之電力電路及切換機構,使其可成功地操作於300kHz之切換頻率,而適用於音頻切換式放大器。基於此,本文提出一雙可調度強健電壓波形控制機構,由迴授控制器、命令前向控制器及強健擾動消除前向控制器組成,經由所提之設計步驟,可使音頻放大器具有緊密且強健之寬廣頻率範圍任意波形追控特性。在所建音頻放大器之性能評估性上,先以電阻性負載從事開發階段測試,再以揚聲器為其實際測試負載。而激勵信號於20Hz至20kHz頻帶間依序採用定頻弦波、帶通濾波之隨機雜訊、音樂光碟所生之實際音源等。
    為使所開發之音響系統具有良好之交流入電電力品質,本論文設計製作一反馳式切換式整流器,做為此音響系統之前級轉換器。在不連續電流操作下,經由所提之強健電壓控制,可建立穩定直流鏈電壓且具高入電電力品質。最後,以一些實測結果驗證所建具切換式整流器前級D類放大器供電音響系統之整體操作效能。


    The major purposes of this thesis are to develop a switch-mode class-D power amplifier for audio system and to perform its robust waveform control. First, some basic issues are explored for facilitating the system development, these issues include structure and modeling of loudspeaker, power circuits and control schemes of class-D amplifiers, key specifications of audio system, etc. In addition, some existing commercialized class-D amplifiers are surveyed to understand their progress.
    Next, a switch mode pulse-width modulated inverter is designed and implemented. The power circuit and switching scheme are properly designed to let the inverter be successfully operated under switching frequency of 300kHz. Then a robust two-degree-of-freedom control (2DOFC) scheme is proposed to let the inverter-fed loudspeaker possesses close and robust voltage arbitrary waveform tracking within wide frequency range. The proposed 2DOFC scheme consists of a feedback controller, a command feedforward controller and a robust disturbance cancellation feedforward controller. Performance evaluation for the developed class-D amplifier is conducted under resistive load and physical loudspeaker load. The waveform tracking control performance is first verified experimentally at some fixed frequencies between 20Hz to 20kHz. Then further evaluations are made using the band-pass filtered random signal and the physical music signal generated from CD player.
    Finally, to let the developed audio system have satisfactory line drawn input power quality, a flyback switch mode rectifier (SMR) is designed and implemented. Under discontinuous current mode operation, a robust voltage controller is proposed to establish well-regulated DC-link voltage with high input drawn power quality. Some simulated and experimental results are provided to demonstrate the performance of the whole SMR-fed switch-mode audio system.

    誌謝 i 摘要 ii 目錄 iii 第一章、簡介 iv 第二章、音響系統之基本事務 v 第三章、切換式變頻器之基本實務及電力品質 vi 第四章、D類音頻放大器之建構 vii 第五章、前端返馳式切換式整流器之建立 viii 第六章、具切換式整流器前級D類音頻放大器之實測評定 ix 第七章、結論 x 附錄: 英文論文 xii

    REFERENCES
    A. Fundamentals of Audio Amplifiers
    [1] D. Dapcus, “Class-D audio power amplifiers: an overview,” IEEE Consum. Electron. Conference, 2000, pp. 400-401.
    [2] Mark Bloechl, Mohannad Bataineh, and Dale Harrell, “Class D switching power amplifiers: theory, design, and performance,” in Proc. IEEE Conference on Southeastcon, 2004, pp. 123-146.
    [3] Eric Gaalaas, “Class D audio amplifiers: what, why, and how,” Analog Dialogue 40-06, 2006.
    [4] F. A. Himmelstoss and K. H. Edelmoser, “High dynamic Class-D power amplifier,” IEEE Trans. Consum. Electron., vol. 44, no. 4, November. 1998.
    [5] Marco Berkhout and Lûtsen Dooper, “Class-D audio amplifiers in mobile applications,” IEEE Trans. Circuits and Systems- I: Regular Papers, vol. 57, no. 5, pp. 992-1002, 2010.
    [6] S. C. Li, V. C. Lin, K. Nandhasri and J. Ngarmnil, “New high-efficiency 2.5V/0.45W RWDM class D audio amplifier for portable consumer electronics,” IEEE Trans. Circuits and Syst. I, vol. 52, no. 9, pp. 1767-1774, September 2005.
    [7] Vincenzi F.R.S., da Silva L.R., Gomes de Freitas L.C., Freitas M.A.A., Fernandes E.R., Vieira J.B. and de Freitas L.C., “Class-D amplifier for automotive and public audition applications,” IEEE Power Electron. Appl. Conference, 2007, pp. 1-11.
    [8] John M. Murray and Gerald M. Oleszek, “Design consideration in Class D MOS power amplifiers,” IEEE Trans. Ind. Electron. Control Instrum., vol. IECI-27, no. 4, 1979.
    [9] The Texas Instruments application report, Design considerations for Class-D audio power amplifiers, literature number SLOA031.
    [10] International Rectifier, Class D Amplifier Design Basics II, February 19, 2009, www.irf.com/product-info/audio/classdtutorial2.pdf
    [11] C. M. Wu, Wing-hong Lau and Henry Shu-hung Chung, “Analytical technique for calculating the output harmonics of an H-Bridge inverter with dead time,” IEEE Trans. Fundam. Theory Appl., vol. 46, no. 5, pp. 617-627, May 1999.
    [12] Marco Berkhout, “An integrated 200-W Class-D audio amplifier,” IEEE Journal of Solid-state Circuits, vol. 38, no. 7, July 2003.
    [13] Soo-Hyoung Lee, Jae-Young Shin, Ho-Young Lee, Ho-Jin Park, Kristian L. Lund, Karsten Nielsen and Jae-Whui Kim, “A 2W, 92% efficiency and 0.01% THD+N Class-D audio power amplifier for mobile applications, based on the novel SCOM architecture,” in Proc. IEEE Custom Integrated Circuits, 2004, pp. 291-294.

    [14] F. Nyboe, C. Kaya, L. Risbo and P. Andreani, “A 240W monolithic Class-D audio amplifier output stage,” in Proc. IEEE ISSCC, 2006, pp. 6-9.

    [15] P. Muggler, W. Chen, C. Jones, P. Dagli and N. Yazdi, “A filter free class D audio amplifier with 86% power efficiency,” in Proc. IEEE Circuits and Syst., 2004, vol. 1, pp. I-1036-1039.
    [16] Yu Feng, Guowen Wei, Wai Tung Ng and Tetsuro Sugimoto, “A 38W digital class D audio power amplifier output stage with integrated protection circuits,” in Proc. IEEE Power, Semicond. Devices & IC’s, ISPSD, 2009, pp. 53-56.
    [17] Huiyun Li, Bah Hwee Gwee, and J. S. Chang, “A digital class D amplifier design embodying a novel sampling process and pulse generator,” in Proc. IEEE Circuits and Syst., ISCAS, 2001, vol. 4, pp. 826-829.
    [18] Zeqi Yu and Hui Feng, “A method of error correction for digital class D power amplifier,” in Proc. IEEE Microelectronics & Electron., 2009, pp. 153-156.
    [19] Rémy Cellier, GaëL Pillonnet, Angelo Nagari and Nacer Abouchi, “An review of fully digital audio class D amplifiers topologies,” in Proc. IEEE Circuits and Syst. TAISA, 2009, pp. 1-4.

    [20] D.S. Oliveira Jr, C.A. Bissochi Jr., F. Vincenzi R. S., J.B. Vieira Jr, V.J. Farias and L.C. de Freitas, ”Proposal of a new audio amplifier,” in Proc. IEEE Power Electron. Congress. 2000, pp.330-334.
    [21] Benno Krabbenborg and Marco Berkhout, “Closed-loop Class-D amplifier with nonlinear loop integrators,” IEEE Journal of Solid-State Circuits, vol. 45, no. 7, pp. 1389-1398, 2010.
    [22] Miguel Angel Rojas-González and Edgar Sánchez-Sinencio, “Low-power high-efficiency Class D audio power amplifiers,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3272-3284, 2009.
    [23] A. Yasuda, T. Kimura, K. Ochiai and T. Hamasaki, “A Class D amplifier using a spectrum shaping technique,” in Proc. IEEE Custom Integr. Circuits Conference, 2004, pp. 173-176.
    [24] Søren Poulsen and Michael A. E. Andersen, “Integrating switch mode audio power amplifiers and electro dynamic loudspeakers for a higher power efficiency,” in Proc. IEEE Power Electronics Specialists Conference, 2004, vol. 1, pp. 724-730.
    [25] Petar Ljušev and Michael A.E. Anderson, “Direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp,” in Proc. IEEE Power Electron., 2005, pp. 2848-2854.

    [26] Liwei Yang, Limei Xu, Tai Yang and Bo Zhang, “Class D power amplifier for audio beam system,” in Proc. IEEE, International Conference on Mechatronics and Autom., 2007.
    [27] TPA2000D2 2W filterless stereo Class D audio power amplifier datasheet, Texas Instruments Inc., Publication Number SLOS291E, May 2003.
    [28] MAX4295: mono, 2W switch-mode (Class D) audio power amplifier datasheet, maxim integrated products Inc., 2001.
    B. Loudspeakers
    [29] Vance Dickason, Loudspeaker Design Cookbook 7th edition, Audio Amateur Press, 2006.
    [30] John M. Eargle, Loudspeaker Handbook, New York: Chapman & Hall, 1997.
    [31] Richard H. Small, “Synthesis of loudspeaker driver parameters,” IEEE International Conference on Acoustics, Speech, and Signal Processing, 1976, vol. 1, pp. 406-408.
    [32] J. Robert Ashley, “Simple measurements for home loudspeaker speakers,” IEEE Conference on Instrumentation and Measurement Technology, 1988, pp. 341-344.
    [33] Joseph Chernof, “Principles of loudspeaker design and operation,” IRE Trans. Audio, vol. 5, no. 5, pp. 117-127, 1957.
    [34] V. K. Jam, W. M. Leach and R. W. Schafer, “Time-domain measurement of vented-box loudspeaker system parameters,” IEEE International Conference on Acoustics, Speech, and Signal Processing, 1981, vol. 6, pp. 776-781.
    [35] W. Marshall Leach, Jr., “Loudspeaker voice-coil inductance losses: circuit models, parameter estimation, and effect on frequency response,” Journal of The Audio Engineering Society, vol. 50, no. 6, 2002.
    [36] Richard H. Small, “Direct-radiator loudspeaker system analysis,” IEEE Trans. Audio Electroacoust, vol. 19, pp. 269.281, 1971.
    C. PWM Inverters and Controls
    [37] H. Dehbonei, L. Borle and C. V. Nayar, “A review and a proposal for optimal harmonic mitigation in single-phase pulse width modulation,” in Proc. IEEE Power Electron and Drive Syst., 2001, vol. 1, pp. 408-414.
    [38] K. Meghriche, O. Mansouri and A. Cherifi, “Microcontroller-based single phase inverter using a new switching strategy,” in Proc. IPEMC, 2006, pp. 1-6.
    [39] V. Blasko, “A novel method for selective harmonic elimination in power electronic equipment,” IEEE Trans. Power Electron., vol. 22, pp. 223-228, Jan. 2007.
    [40] J. Holtz, “Pulsewidth modulation: a survey,” IEEE Trans. Ind. Electron., vol. 39, pp. 410-420, 1992.
    [41] D. Czarkowski, D. V. Chudnovsky and I. W. Selesnick, “Solving the optimal PWM problem for single-phase inverters,” IEEE Trans. Circuits Syst. I, vol. 49, no. 4, pp. 465-475, 2002.
    [42] T. Senjyu, H. Kamifurutono and K. Uezato, “Robust current control method with disturbance voltage observer for voltage source PWM inverter,” IEEE International Conference on Power Electron. and Drive Syst., vol. 1, pp. 379-384, 1995.
    [43] P. A. Dahono and I. Krisbiantoro, “A hysteresis current controller for single-phase full-bridge inverters,” IEEE International Conference on Power Electronics and Drive Syst., 2001, vol. 1, pp. 415-419.
    [44] B. J. Kang and C. M. Liaw, “Robust hysteresis current-controlled PWM scheme with fixed switching frequency,” in Proc. IEE Electric Power Appl., vol. 148, no. 6, pp. 503-512, 2001.
    [45] Kyu Min Cho, Won Seok Oh, Young Tae Kim and Hee Jun Kim, “A new switching strategy for pulse width modulation (PWM) power converters,” IEEE Trans. Ind. Electron., vol. 54, pp. 330-337, 2007.
    [46] Y. Sato and M. Jiang, “Output waveform improvement of high switching frequency PWM inverters introducing digital signal processing,” in Proc. IEEE Power Convers. Conference, 2007, pp. 800-803.
    [47] Bah-Hwee Gwee, J. S. Chang and Adrian, V, “A micropower low-distortion digital Class-D amplifier based on an algorithmic pulsewidth modulator,” IEEE Trans. Circuits and Syst., vol. 52, no. 10, pp. 2007-2022, 2005.
    [48] Alejandro R. Olivia, Simon S. Ang and Thuy V. Vo, “A multi-loop voltage-feedback filterless Class-D switching audio amplifier using unipolar pulse-width-modulation,” IEEE Trans. Consumer Electron., vol. 50, no. 1, pp. 312-319, 2004.

    [49] Carlos Ferreira, Beatriz Borges, Hugo Ribeiro and Hugo Marques, “Single stage switching audio power amplifier and power supply,” in Proc. IEEE Consum. Electron. ISCE, 2008, pp.1-4.
    [50] Hirotaka Koizumi, “Delta-sigma modulated Class D series resonant converter,” in Proc. IEEE PESC, 2008, pp.257-262.
    [51] Akihiko Yoneya and Akira Watanabe, “Low distortion digital pulse width modulation for audio Class-D amplifier,” IEEE International Symposium on Communications and Information Technol., vol. 1, pp. 515-518, 2004.
    [52] Søren Poulsen and Michael A. E. Andersen, “Simple PWM modulator topology with excellent dynamic behavior,” in Proc. IEEE Applied Power Electronics Conference and Exposition, 2004, vol. 1, pp. 486-492.
    [53] GaëL Pillonnet, Rémy Cellier, Nacer Abouchi and Angelo Nagari, “A topological comparison of PWM and hysteresis controls in switching audio amplifiers,” in Proc. IEEE Circuits and Syst., 2008, pp. 668-671.
    [54] Shahriyar Kaboli, Ali Moayedi and H. Oraee, “Application of random PWM technique for reducing the high frequency harmonics in Class-D amplifier,” in Proc. IET Power Electron., Machines and Drives, 2008, pp. 406-410.
    [55] S. Logan and M. O. J. Hawksford, “Linearization of Class D output stages for high-performance audio power amplifiers,” in Proc. IEE Advanced A-D and D-A Conversion Techniques and their Applications, 1994, no. 393, pp. 6-8.
    [56] Hirotaka Koizumi, Kosule Kurokawa and Shinsaku Mori, “Analysis of Class D inverter with irregular driving patterns,” IEEE Trans. Circuits and Syst., vol. 53, no. 3, pp. 677-687, 2006.
    [57] Louis R. Nerone, “Analytical solutions of the Class D inverter,” IEEE International Symposium on Circuits and Syst., pp. 1268-1271, 2008.
    [58] Byoung-Kuk Lee, Bum-Seok Suh and Dong-Seok Hyun, “Design consideration for the improved Class-D inverter topology,” IEEE Trans. Ind. Electron, vol. 45, no. 2, pp. 217-227, 1998.
    [59] Mikkel C. W. Høyerby and Michael A. E. Andersen,” Carrier distortion in hysteretic self-oscillating Class-D audio power amplifiers: analysis and optimization,” IEEE Trans. Power Electron., vol. 24, no. 3, pp. 714-729, 2009.
    [60] Sérgio Sousa, Victor M. E. Antunes, V. Fernão Pires and J. Fernando Silva, “Implementation of a new structure for a closed-loop Class D amplifier,” in Proc. IEEE Power Engineering, Energy and Electrical Drives, 2009, pp. 26-30.

    [61] Chris Chapelsky, John Salmon and Andrew Knight, “Simple and robust feedback control of a two-switch multi-level half-bridge inverter with non-ideal operation,” in Proc. IEEE ECCE, 2009, pp. 214-215.
    [62] Kyu Min Cho, Won Seok Oh, Won Sup Chung and Hee Jun Kim, “A new Class-D stereo audio amplifier using direct speaker current control,” IEEE Conference on Power Electronics Specialists, PESC, 2004, vol. 2, pp. 1308-1310.

    [63] Miguel Angel Rojas-González and Edgar Sánchez-Sinencio, “Design of a Class D audio amplifier IC using sliding mode control and negative feedback,” IEEE Trans. Consumer Electronics, vol. 53, no. 2, pp. 609-617, 2007.

    [64] Jong-hu Park, Chang G. Kim, Jae-hoon Jeong and Bo H. Cho, “A novel controller for switching audio power amplifier with digital input,” in Proc. IEEE PESC, 2002, vol. 1, pp. 39-7-44.

    [65] Pietro Adduci, Edoardo Botti, Enrico Dallago and Giuseppe Venchi, “PWM power audio amplifier with voltage/current mixed feedback for high-efficiency speakers,” IEEE Trans. Industrial Electronics, vol. 54, no. 2, pp. 114 -1149, 2007.

    [66] Chintan Trehan and Kwong S. Chao, “A high performance Class-D power amplifier using error feedback architecture,” IEEE Conference on Circuits and Systems, 2005, vol. 1, pp. 396-399.

    [67] Kyu Min Cho, Won Seok Oh, Hai Xu and Hee Jun Kim, “A novel control strategy of the Class-D stereo audio amplifier,” in Proc. IEEE Power Electron.Drive Syst., 2007, pp. 943-947.

    [68] Jeong J.H., Seong H. H., Yi J.H. and Cho G.H., “A Class D switching power amplifier with high efficiency and wide bandwidth by dual feedback loops,” in Proc. IEEE on Consum. Electron., 1995, pp. 429-429.
    [69] Søren Poulsen and Michael A. E. Andersen, “Single conversion audio amplifier and DC-AC converters with high performance and low complexity control scheme,” in Proc. IEEE PESC, 2004, vol. 1, pp. 267-271.
    [70] Saponara, S., “Current-feedback architecture for high-slew-rate and low-THD high-end audio amplifier,” IEEE Electron. Lett., vol. 44, no. 25, pp. 1433-1434, 2008.
    [71] K. P. Sozariski, R. Strzelecki and Z. Fedyczak, “Digital control circuit for Class-D audio power amplifier,” in Proc. IEEE PESC, 2001, vol. 2, pp. 1245-1250.
    [72] Zhang Ying, Cai Ling, Meng Qing-De and Li Yao-hua, “A high-efficiency cascade multilevel Class-D amplifier with sliding mode control,” in Proc. IEEE Robotics, Automation and Mechatronics, 2008, pp. 1212-1216.

    [73] Silva J.F., “PWM audio power amplifiers: sigma delta versus sliding mode control,” in Proc. IEEE on Electron. Circuit. Syst., 1995, vol. 1, pp. 359-362.
    [74] Gael Pillonnet, Rémy Cellier, Nacer Abouchi and Monique Chiollaz, “An integrated class d audio amplifier based on sliding mode control,” in Proc. IEEE Circuit Design and Technol. and Tuts., 2008, pp. 117-120.
    [75] Gael Pillonnet, Rémy Cellier, Nacer Abouchi and Monique Chiollaz, “A high performance switching audio amplifier using sliding mode control,” in Proc. IEEE Circuits and Syst. and TAISA Conference, 2008, pp. 305-309.
    [76] Tong Ge and Joseph S. Chang “Bang-bang control class D amplifiers: total harmonic distortion and supply noise,” IEEE Trans. Circuits and Syst.s, vol. 56, no. 10, pp. 2353-2361, 2009.

    [77] Søren Poulsen and Michael A. E. Andersen, “Hysteresis controller with constant switching frequency,” IEEE Trans. Consum. Electron., vol. 51, no. 2, pp. 688-693, 2005.
    [78] Sang-Hwa Jung, Nam-In Kim and Gyu-Hyeong Cho, “Class D audio power amplifier with fine hysteresis control,” IEEE Electron. Lett., vol. 38, no. 22, pp. 1302-1303, 2002.
    [79] V. M. Sala, J. Cusidó, M. Delgado, G. Ruiz and J. A. Ortega “Feed-back active control for half-bridge Class-D audio amplifiers,” IEEE International Symposium on Industrial Electron., pp. 369-373, 2008.

    [80] T. H. Chen and C. M. Liaw, “Vibration acceleration control of an inverter-fed electrodynamic shaker,” IEEE/ASME Trans. Mechatron., vol. 4, no. 1, pp. 60–70, 1999.
    D. Switch-Mode Rectifiers
    [81] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003.
    [82] Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no.3, pp. 749-755, 2003.
    [83] Martin K. H. Cheung, Martin H. L. Chow and Chi K. Tse, “An analog implementation to improve load transient response of PFC pre-regulators,” IEEE International Conference on Telecommunications Energy Conference, 2007, pp. 848-855.

    [84] Vinayak N. Shet, “A high power factor forward flyback converter with input current waveshaping,” IEEE International Conference on Power Electronics, Drives and Energy Syst., 2006, pp. 12-15.

    [85] D. G. Lamar, A. Fernández, M. Arias, M. Rodríguez, J. Sebastián and M.M. Hernando “Limitation of the flyback power factor corrector as a one-stage power supply,” IEEE Specialists Conference Power Electronics, 2007, pp. 1343-1348.

    [86] Robert Erickson, Michael Madigan, and Sigmund Singer, “Design of a simple high-power-factor rectifier based on the flyback converter,” IEEE Conference Proceedings Applied Power Electronics Conference and Exposition, 1990, pp. 792-801.

    [87] Y. C. Chang and C. M. Liaw, “Switching and voltage controls for a flyback switch-mode rectifier,” IEEE Conference on Power Electronics and Motion Control Conference, 2008, pp. 456-462.

    [88] Y. C. Chang and C. M. Liaw, “Design and control for a charge-regulated flyback switch-mode rectifier,” IEEE Trans. Power Electronic, vol. 24, no. 1, pp. 59-74, 2009.

    [89] Tomotaka Ogawa, Yuta Miyazawa, Kohji Higuchi, Tatsuyoshi Kajikawa, Akira Shimizu and Osamu Yoshizawa, “Compact audio power supply using approximate 2DOF robust control” IEEE SICE Annual Conference, 2008, pp. 2142-2145.

    [90] A. Lázaro, A. Barrado, M. Sanz, V. Salas and E. Olías, “500W Class-D single-stage power supply,” IEEE Specialists Conference Power Electronics, 2005, pp. 554-559.

    [91] J. Lo Cascio and M. Nalbant, “Active power factor correction using a flyback topology,” PCIM Conf. Proc., 1990, pp.10-17.
    [92] Nikolaos P. Papanikolaou, Emma;nuel C. Tatakis and Anastasios Ch. Kyritsis, “Design of PFC AC/DC flyback converter for low voltage applications,” in Proc. European Power Electronics and Applications, 2005, pp.1-10.
    [93] D. Dah-Chuan Lu, D. Ki-Wai Cheng and Yim-Shu Lee, “Single-switch flyback power-factor-corrected ac/dc converter with loosely regulated intermediate storage capacitor voltage,” in Proc. IEEE Circuits and Syst., 2003, pp. 264-267.
    [94] Y. Zheng and G. Moschopoulos, “Design considerations for a new AC-DC single stage flyback converter,” in Proc. IEEE APEC’06, 2006, pp. 400-406.
    [95] S. K. Mishra, B. G. Fernandes and K. Chatterjee, “Single stage single switch AC/DC converters with high input power factor and tight output voltage regulation,” in Proc. IECON, 2004, pp. 2690-2695.
    [96] E. J. Rikos and E.C. Tatakis, “Single-stage single-switch isolated PFC converter with non-dissipative clamping,” in Proc. IEE-Electr. Power Appl., March 2005, vol. 152, no. 2, pp. 166-174.
    [97] C. Larouci, J. P. Ferrieux, L. Gerbaud, J. Roudet and J. Barbaroux, “Control of a flyback converter in power factor correction mode: Compromize between the current constraints and the transformer volume,” IEEE APEC, 2002, pp. 722-727.
    [98] D. Dalal and O. Meilhon, “A single stage PFC+PWM converter for 75-150W distributed power system,” on Semiconductor, USA.
    E. Others
    [99] MICROMETALS T130-2 datasheet, “ http://www.micrometals.com”
    [100] C. M. Liaw and S. J. Chiang, “Robust control of multimodule current-mode controlled converters,” IEEE Trans. Power Electronics, vol. 8, no. 4, pp. 455-465, 1993.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE