研究生: |
類成道 Cheng Dao Lei |
---|---|
論文名稱: |
鈣硼矽結晶玻璃的束縛燒結 Constrained Sintering of Crystallizable CaO-B2O3-SiO2 Glass |
指導教授: |
簡朝和
Jau Ho Jean |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 23 |
中文關鍵詞: | 束縛燒結 、結晶玻璃 、燒結應力 |
外文關鍵詞: | constrained sintering, crystallizable glass, sintering stress |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
應用黏性模型分析鈣-硼-矽結晶玻璃的束縛燒結行為,以週期性加壓的方式量測鈣-硼-矽結晶玻璃的單軸向黏度,並推測其體黏度和燒結應力。鈣-硼-矽結晶玻璃的單軸向黏度在結晶前約為108∼109 Pa•s,結晶發生後快速提高到3∼15X109 Pa•s,比較不同昇溫速率下的燒結應力最大值,由1℃/min的165kPa,增加到5℃/min的400kPa,到10℃/min的820kPa,同時觀察到不同昇溫速率下的微結構差異,反映1℃/min的微結構比10℃/min不緻密。對於鈣-硼-矽結晶玻璃,利用壓應力輔助燒結以達到完全束縛的條件,測量到臨界壓應力的大小為120∼150 kPa,在750∼760℃附近有最大值,與使用黏性模型分析估計的大小接近。如果是利用束縛燒結的方式,則量測到的束縛張應力有可能超過完全束縛所需的張應力,推測這樣的張應力會抵消部分的燒結應力而使鈣-硼-矽結晶玻璃的緻密度下降。
[1] B. Geller, B. Thaler, A. Fathy, M.J. Liberatore, H.D. Chen, G. Ayers, V. Pendrick and Y. Narayan, “LTCC-M: An Enable Technology for High Performance Multilayer RF Systems,” J. Microwave, 7, 64-72 (1999).
[2] R.R. Tummala, P. Garrou, T.K. Gupta, N. Kuramoto, K. Niwa, Y. Shimada, M. Terasawa, “Microelectronics packaging handbook /Part II Semiconductor packaging” (Chapman & Hall, New York, 1996) Chap. 9.
[3] J.H. Jean and C.R. Chang, “Camber Development during Cofiring Ag-Based Low-Dielectric-Constant Ceramic Package,” J. Mater. Res., 12 [10] 2743-2750 (1997).
[4] K.R. Mikeska and D.T. Schaefer, “Method for Reducing Shrinkage during Firing of Ceramic Bodies,” US Patent No. 5,454,741, 1994.
[5] J. Bang and G.Q. Lu, “Constrained-Film Sintering of a Borosilicate Glass: In-situ Measurement of Film Stress,” J. Am. Ceram. Soc., 78 [3] 813-815 (1995).
[6] T.J. Garino and H.K. Bowen, “Deposition and Sintering of Particle Films on a Rigid Substrate,” J. Am. Ceram. Soc., 70 [11] C315-317 (1987).
[7] T.J. Garino and H.K. Bowen, “Kinetics of Constrained-Film Sintering,” J. Am. Ceram. Soc., 73 [2] 251-257 (1990).
[8] G.W. Scherer and T. Garino, “Viscous Sintering on a Rigid Substrate,” J. Am. Ceram. Soc., 68 [4] 216-220 (1985).
[9] Y.C. Lin and J.H. Jean, “Constrained Sintering of Silver Circuit Paste,” J. Am. Ceram. Soc., 85 [1] 150-154 (2002).
[10] W.A. Vitrio and R.L. Brown, “Process for Fabricating Dimensionally Stable Interconnect Boards, ” US Patent No. 4,656,552, 1987.
[11] R.M. German, “Sintering Theory and Practice” (John Wiley & Sons, New York, 1996) Chap.7.
[12] G.W. Scherer, “Viscous Sintering under a Uniaxial Load,” J. Am. Ceram. Soc., 69 [9] C206-C207 (1986).
[13] P.C. Panda, J. Wang and R. Raj, “Sinter-Forging Characteristics of Fine-Grained Zirconia,” J. Am. Ceram. Soc., 71 [12] C507-C509 (1988).
[14] R.K. Bordia and A. Jagota, “Crack Growth and Damage in Constrained Sintering Films,”J. Am. Ceram. Soc., 76 [10] 2475-2485 (1993).
[15] C.R. Chang and J.H. Jean, “Crystallizatioin Kinetics and Mechanism of Low-Dielectric, Low-Temperature, Cofirable CaO-B2O3-SiO2 Glass-Ceramics,” J. Am. Ceram. Soc., 82 [7] 1725-1732 (1999).
[16] R.K. Bordia and G.W. Scherer, “On Constrained Sintering-I. Constitutive Model for a Sintering Body,” Acta. Metall., 36 [9] 2393-2397 (1988).
[17] R.K. Bordia and G.W. Scherer, “On Constrained Sintering-II. Comparison of Constitutive Models,” Acta. Metall., 36 [9] 2399-2409 (1988).
[18] R.K. Bordia and G.W. Scherer, “On Constrained Sintering-III. Rigid Inclusions,” Acta. Metall., 36 [9] 2411-2416 (1988).
[19] P.Z. Cai, G.L. Messing and D.L. Green, “Determination of the Mechanical Response of Sintering Compact by Cyclic Loading Dilatometry,” J. Am. Ceram. Soc., 80 [2] 445-452 (1997).
[20] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics, 2nd ed., Wiley, New York, 1976, Chap. 15.
[21] 陳佩瑜,簡朝和,”玻璃陶瓷系統的束縛燒結行為,” 國立清華大學材料科學與工程學系碩士論文 (2002)。