簡易檢索 / 詳目顯示

研究生: 周傳儒
Chou, Chuan-Ju
論文名稱: 運用結構性區域限制修正最佳化光線傳播率圖之單張影像去霧
Single Image Dehazing Using Optimal Transmission Under Textured-Region Constraint
指導教授: 許秋婷
口試委員: 簡仁宗
許秋婷
王聖智
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 40
中文關鍵詞: 去霧光線傳播率結構性區域限制
外文關鍵詞: Dehazing, Transmission, Textured-region constraint
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 消除濃霧影響的影像還原過程稱為「去霧」。光線傳播率圖隱含了影像當中的深度資訊,因此求得光線傳播率圖的近似值是去霧方法中最重要的步驟。求得光線傳播率圖之最佳解的主要問題為結構性區域的不連續性。在本論文中,我們提出結構性區域限制項,處理結構性區域的光線傳播率圖不準確之問題。藉由引入結構性區域限制項,我們所推導的目標函數保證有全域最佳解,並且具備光線傳播率圖在結構性區域的連續性。我們的實驗結果顯示對於結構性區域之光線傳播率圖以及去霧結果的顯著改善。


    Dehazing is an image restoration process to eliminate the hazy effect. Approximation of the transmission, which encodes the scene depth information, is the most significant step to tackle the dehazing problem. In this thesis, we propose a textured-region constraint to deal with inaccurate estimation on transmission within a textured region. The textured-region constraint assumes that transmission for pixels in a textured region should be similar. By including the textured-region constraint, the objective function guarantees to have a global optimal solution with constant textured-region transmission. Our experimental results show significant improvement in textured-region transmission and dehazed results.

    中文摘要 I Abstract II List of contents III 1. Introduction 1 2. Related Work 4 3. Derivation of Optimal Transmission 10 4. Proposed Method 13 4.1. Motivation 13 4.2. Textured-Resion Constraint 13 5. Experimental Results 20 6. Discussion and Limitation 32 7. Conclusion 38 8. References 39

    8. References
    [1] Y.S. Lai, Y.L. Chen and C.T. Hsu, “Single Image Dehazing with Optimal Transmission Map,” Proc. IEEE Conf. International Conference on Pattern Recognition, pp. 388–391, 2012.
    [2] S.G. Narasimhan and S.K. Nayar, “Interactive Deweathering of an Image Using Physical Models,” Proc. IEEE Workshop on Color and Photometric Methods in Computer Vision, pp. 1387–1394, Oct. 2003.
    [3] S.G. Narasimhan and S.K. Nayar, “Contrast Restoration of Weather Degraded Images,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 6 pp. 713–724, June 2003.
    [4] S. Narasimhan, S. Nayar, “Chromatic Framework for Vision in Bad Weather, ” IEEE Conference on Computer Vision and Pattern Recognition, 2000.
    [5] R. Tan, “Visibility in Bad Weather from a Single Image,” IEEE Conf. Computer Vision and Pattern Recognition, pp.1–8, June 2008.
    [6] K. He, J. Sun and X. Tang, “Single Image Haze Removal Using Dark Channel Prior,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol.33, No.12, pp.2341–2353, Aug. 2010.
    [7] R. Fattal, “Single Image Dehazing,” ACM Trans. on Graphics, 2008.
    [8] P. Lee and Y. Wu, “Nonlocal matting,” Proc. IEEE Conf. Computer Vision, pp.2193–2200, 2011.
    [9] A. Buades,, B. Coll, and J.M. Morel, “Nonlocal image and movie denoising,” International journal of computer vision, pp. 123–139, 2008.
    [10] A. Levin, D. Lischinski and Y. Weiss, “A Closed Form Solution to Natural Image Matting,” Proc. IEEE Conf. on Computer Vision and Pattern Recognition, vol. 1, pp. 61–68, June 2006.
    [11] S. Parthasarathy and P. Sankaran, “A Retinex based Haze Removal Method,” IEEE Conf. on Industrial and Information Systems , pp. 1–6, Aug. 2012.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE