研究生: |
謝承祐 Hsieh, Cheng-Yu |
---|---|
論文名稱: |
晶圓凸塊產能規劃 Capacity Planning of Wafer Bumping |
指導教授: |
陳建良
Chen, James C. |
口試委員: |
陳子立
Chen, Tzu-Li 陳盈彥 Chen, Yin-Yann |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系碩士在職專班 Industrial Engineering and Engineering Management |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 53 |
中文關鍵詞: | 晶圓凸塊封裝 、無限產能規劃 、產能規劃系統 、實驗設計 、扇入型晶圓凸塊封裝 |
外文關鍵詞: | Bumping, Infinity capacity planning, capacity planning system, design of experiment, Fan-in Bumping |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用無限產能規劃建立晶圓凸塊封裝產能規劃系統 (Bumping Capacity Planning System),此系統係使用Microsoft Visual Basic for Application (VBA)應用程式建立,系統可以處理在製品、訂單外可按不同優先順序與機台負荷不超過最大的情況下做規劃。此晶圓凸塊產能規劃系統可以分為五個模組︰在製品指派模組 ( WIP-pulling module, WPM )、訂單優先順序模組( Order Priority module, OPM)、批量投料模組( Lot release module, LRM )、產能堆疊模組 ( Workload accumulation module, WAM )與產能平衡模組 ( Workload balance module, WBM ) 。
本研究使用系統代替人員做產能規劃,系統可依循同樣的步驟完成規劃,不會因為人的健康狀況與環境突發狀況造成規劃結果與準確性。系統可有效的安排機台負荷,本研究若有機台負荷超過機台最大負荷即會先按後推排程確認是否後推,若無則按前推排程將超過負荷的問題改善。本文亦使用實驗設計評估各因子與層級的影響效力。四種分析因子產品比例、訂單間數量變異程度 、訂單順序與產能平衡,各因子有兩個或四個層級,兩層級的因子為︰分別為產品比例、訂單間數量變異程度與產能平衡;四層級的因子為︰訂單順序。三個能力表現的衡量回饋是瓶頸機台的平均使用率、達成率與遲交訂單數。
關鍵字:晶圓凸塊封裝、無限產能規劃、產能規劃系統、實驗設計、扇入型晶圓凸塊封裝
This research uses Infinite Capacity Planning to develop a Bumping Capacity Planning System (BCPS). This system was created via Microsoft Visual Basic for Application (VBA). It can plan the orders and work in process according to different priorities with machine load not exceeding the maximum capacity. BCPS consists of five models, WIP-Pulling Module (WPM), Order Priority Module (OPM), Lot Release Module (LRM), Workload Accumulation Module (WAM) and Workload Balance Module (WBM). BCPS is created for automatic capacity planning to replace production planner. It can follow the same steps of manual production planning. However, its planning results and accuracy will not be influenced by planner’s instability and urgent orders.
BCPS takes into account machine loading. If the required load of the machine exceeds its maximum, backward scheduling will be used. If all available capacity is used, forward scheduling will be used. Experimental design is applied to evaluate the effectiveness BCPS. There are four control factors, product mix, degree of quantity variation between orders, orders priority, and workload balance. Each factor has two or four levels. The factors of product mix, degree of quantity variation between orders, and workload balance have two levels, while orders priority has four levels. Three responses factors are average utilization of the bottleneck machine, the achieve rate and tardiness of orders.
Key words: Bumping, Infinity capacity planning, capacity planning system, design of experiment and Fan-in Bumping
[1] Brah, S.A., Loo, L.L., 1999. “Heuristics for scheduling in a flow shop with multiple processors” European Journal of Operational Research, 113 (1), 113-122.
[2] Chen, B.C., Matis, T.I., 2013. “A flexible dispatching rule for minimizing tardiness in job shop scheduling” Int. J. Production Economics, 141 (1), 360-365
[3] Chen, J.C., Chen, C.W., Lin C., Rau, H., 2005. “Capacity Planning with Capacity for Multiple Semiconductor Manufacturing Fabs.” Computers and Industrial Engineering, 48 (4), 709-732.
[4] Chen, J.C., Chen, T.L., Pratama, B.R., Tu, Q.F., C., 2018. “Capacity planning in the thin film transistor – Liquid crystal display cell process” Journal of Manufacturing Systems, 39 (6), 63-78.
[5] Chen, J.C., Chen, T.L., Pratama, B.R., Tu, Q.F., C., 2018. “Capacity planning with ant colony optimization for TFT-LCD array manufacturing” Journal of Intelligent manufacturing, 29 (8), 1695-1713.
[6] Chen, J.C., Chen, T.L., Harianto, H., 2017. ‘‘Capacity Planning for Packaging Industry’’ Journal of Manufacturing Systems, 42(12), 153–169
[7] Chen, J.C., Fan, Y.C. & Chen, C.W., 2008a. “Capacity requirements planning for twin Fabs of wafer fabrication.” International Journal of Computers Integrated Manufacturing, 47 (16), 4473-4496.
[8] Chen, J.C., Wang, K.J., Wang, S.M., Yang, S.J., 2008b. ‘‘Price negotiation for capacity sharing in a two-factory environment using genetic algorithm’’ International Journal of Production Research, 46 (7), 1847–1868
[9] Chen, J.C., Huang, P.B., Wu, J.G., Lai, K.Y., Chen, C.C., Peng, T.W., 2013“Advance planning and scheduling for TFT-LCD color filter fab with multiple lines” International Journal of Advanced Manufacturing Technology, 67 (14), 101-110.
[10] Chen, J.C., Su, L.H., Sun, C.L., and Hsu M.F., 2010. “Infinite capacity planning of IC packaging plants” International Journal of Production Research, 48 (19), 5729-5748.
[11] Chen, J.C., Sun, C.L., and Chen, T.L., 2015. “Capacity Planning for Integrated Circuit Final Test Plants” International Journal of Computers Integrated Manufacturing, 28 (12), 1262-1274.
[12] Chen, J.C., Chen, Y.Y., Chen, T.L., and Lin, J.Z., 2016. “Comparison of simulated annealing and tabu-search algorithms in advanced planning and scheduling systems for TFT-LCD colour filter fabs” International Journal of Computers Integrated Manufacturing, 30 (6), 1-19.
[13] Chen, K.J., Ji, P., 2007. “A mixed integer programming model for advance planning and scheduling (APS) ” European Journal of Operational Research, 181 (1), 515-522.
[14] Choi, B.K. and Seo, J.C., 2009. “Capacity-filtering algorithms for finite-capacity planning of a flexible flow line” International Journal of Production Economics, 47 (12), 3363–3382.
[15] Chua, T.J., Liu, M.W., Wang, F.Y., Yang, W.J., Tian-Xiang Cai, 2007. “An intelligent multi-constraint finite capacity-based lot release system for semiconductor backend assembly environment” Robotics and Computer Integrated Manufacturing, 23 (3), 326–338.
[16] Enns, S.T., 1996. “FINITE CAPACITY SCHEDULEING SYSTEM: PERFORMANCE ISSUES AND COMPARISONS” Computers & Industrial Engineering, 30 (4), 727–739.
[17] Habla, C., Monch, L., DrieBle, R., 2007. “A Finite Capacity Production Planning Approach for Semiconductor Manufacturing” IEEE Conference on Automation Science and Engineering, 1 (SuRP-A03.2), 82–87
[18] Henrich, P., Land, M., and Gaalman, G., 2006. ‘‘Grouping machines for effective workload control.’’ Int. J. Production Economics, 148 (1), 21–36.
[19] Ho, J.C., Chang, Y.L., 2001. ‘‘An integrated MRP and JIT framework’’ Computers & Industrial Engineering, 41 (2), 173–185.
[20] Hvolby, H.H., Steger-Jensen, K., 2010. ‘‘Technical and industrial issues of Advanced Planning and Scheduling (APS) systems’’ Computers in Industry, 61 (2), 845–851.
[21] Kochhar, S., Morris, R.J.T., 1987. ‘‘Heuristic Methods for Flexible Flow Line Scheduling’’ Journal of Manufacturing Systems, 6 (4), 299–314.
[22] Kurz, M.E., Ask, R.G., 2003. ‘‘Comparing scheduling rules for flexible flow’’ Ink. J. Production Economics, 85 (3), 371–388.
[23] Lin, J.C., Chen, T.L., Chu, H.C. 2016. “A stochastic programming approach for multi-site capacity planning in TFT-LCD manufacturing under demand uncertainty’’. Int. J. Production Economics, 148, 21–36.
[24] Mhiri, E., Jacomino, M., Mangione, F., Vialletelle, P., 2014. “A STEP TOWARD CAPACITY PLANNING AT FINITE CAPACITY IN SEMICONDUCTOR MANUFACTURING” Proceedings of the 2014 Winter Simulation Conference, 1, 2239–2250
[25] Mhiri, E., Jacomino, M., Mangione, F., Vialletelle, P., Lepelletier, G., 2015. “Finite capacity planning algorithm for semiconductor industry considering lots priority” IFAC-PapersOnLine, 48(3), 1598–1603.
[26] Ou-Yang, C., Hon, S.J., 2008. “Developing an agent-based APS and ERP collaboration framework” The International Journal of Advanced Manufacturing Technology, 35(9), 943–967.
[27] Saad, S.M., Pickett, N., Kittiaram, K., 2004. “An integrated model for order release and due-date demand management” Journal of Manufacturing Technology Management, 15 (1), 76–89.
[28] Wiers, V.C.S., 2002. “A case study on the integration of APS and ERP in a steel processing plant” Production Planning & Control, 13 (6), 552–560.
[29] Zozom, A., Hodgson, T.J., King, R.E., Weintraub, A. and Cormier, D., 2003. “Integrated job release and shop-floor scheduling to minimize WIP and meet due-dates” International Journal of Production Research, 41 (1), 31–45.
[30] 2007 IEEE International Conference on Automation Science and Engineering, https://ieeexplore.ieee.org/xpl/conhome/4341639/proceeding
[31] Proceedings of the 2014 Winter Simulation Conference, https://portalparts.acm.org/2700000/2693848/fm/frontmatter.pdf?ip=123.241.190.81
[32] Yole Development, http://www.yole.fr/company.aspx
[33]日月光集團, https://ase.aseglobal.com/ch/about
[34]頎邦科技, http://www.chipbond.com.tw/tw_index.aspx
[35]晶圓級封裝凸塊介電層技術之改進,
http://ir.lib.kuas.edu.tw/bitstream/987654321/10301/2/18133851-201303...
[36] ADVANCED PACKAGING INDUSTRY - OVERVIEW
, http://www.yole.fr/2014-galery-3D.aspx#I0003f250
[37] Advanced packaging industry - 2018 OSAT revenue per geo. breakdown, http://www.yole.fr/iso_album/illus_status_advanced_packaging_industry_2018osat_revenue_geobreakdown_yole_june201.jpg
[38] The advanced packaging, a wonderful world,
http://www.yole.fr/AdvancedPackaging_IndustryUpdate.aspx#.XiRcgq0W6u4