研究生: |
黃筱妤 Huang, Hsiao-Yu |
---|---|
論文名稱: |
以共振軟X光非彈性散射研究氧化鎳,氧化鈷之電子激發態 Electronic Excitations of NiO and CoO Revealed by Resonant Inelastic Soft X-ray Scattering |
指導教授: |
黃迪靖
Huang, D. J. |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 88 |
中文關鍵詞: | 共振軟X光非彈性散射 、過渡金屬氧化物 、強關聯電子系統 |
外文關鍵詞: | Resonant inelastic soft x-ray scattering, Transition metal oxide, Strongly correlated electronic system |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
強關聯電子系統的電子結構是凝態物理研究中一項重要的課題。許多新奇的物理現象決定於價電子間的強交互作用力,如高溫超導、龐磁阻等現象。其中過渡金屬氧化物在強關聯電子系統中扮演重要角色。對探測過渡金屬氧化物的電子激發態而言,共振軟X光非彈性散射是一個有效的實驗方法。藉由量測激發態的能量和動量轉移量的關係,可以提供系統的微觀電子結構。
在本論文中,我們使用新建的軟X光非彈性散射光束線,測量NiO和CoO的共振非彈性散射能譜。此實驗系統的建構是基於"能量補償原理",即利用兩個相同且可調焦距的光柵作為單光儀和分光儀,可增加入射的光通量以補償微弱的非彈性散射訊號強度,且不影響能量解析度。在入射光能量為930 eV時,整個系統的能量解析度可達到240 meV。我們測量到dd excitations和charge transfer excitations的存在。藉由crystal field theory,可以完整解釋dd excitations並可得到crystal field的強度(10Dq)。此外,我們的實驗結果與SIAM理論計算一致。
The electronic structure of strongly correlated electronic systems is an important issue in condensed matter physics, since the discovery of various interesting phenomena arising from strong correlations, such as superconductivity, colossal magnetoresistance, ...etc. Resonant inelastic X-ray scattering (RIXS) in the soft X-ray range is a powerful probe to investigate electronic excitations in solids. By measuring the excitation energies and the dependence of momentum transfer, the electronic structure can be further revealed.
In this thesis, we performed measurements of resonant inelastic soft X-ray scattering on NiO and CoO, by using a newly designed beamline based on an energy compensation principle. Two optically identical, actively bendable gratings were used as the monochromator and spectrometer. The RIXS spectra at L-edge with a combined energy resolution at 240 meV were obtained. We assigned different energy-loss features of electronic excitations from RIXS spectra to the dd excitations and charge-transfer excitations. The dd excitations are interpreted by the crystal field theory, and the crystal field strength (10Dq) is obtained. The RIXS spectra obtained with different incident photon energies are consistent well with the simulations by the single impurity Anderson model.
Chapter 1
[1] S. Nakajima, Y. Toyozawa, and R. Abe, The physics od elementary excitations,
Springer-Verlag, 1980.
[2] H. von Lohneysen, Physica B 281-282, 1031 (2000).
[3] J. Orenstein and A. J. Millis, Science 288, 468 (2000).
[4] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130,
3296 (2008).
[5] Y. Tokura and N. Nagaosa, Science 288, 462 (2000).
[6] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).
[7] D. J. Huang et al., Phys. Rev. Lett. 96, 096401 (2006).
[8] N. F. Mott, Proc. Phys. Soc. London, Sec. A 62, 416 (1949).
[9] J. Hubbard, Proc. Phys. Soc. London, Sec. A 276, 238 (1963).
[10] H. Eskes and R. Eder, Phys. Rev. B 54, R14229 (1996).
[11] S. Maekawa et al., Physics of transition metal oxides, Springer, 2004.
[12] J. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev. Lett. 55, 418 (1985).
[13] S. Sugano, Y. Tanabe, and H. Kamimura, Multiplets of transition-metal ions in
crystals, Academic Press, New Yotk and London, 1970.
[14] M. Tinkham, Group Theory and Quantum Mechanics, Mcgraw-Hill, 1964.
[15] E. Balcar and S. W. Lovesey, Theory of magnetic neutron and photon scattering,
Oxford Science Publications, 1989.
[16] NIST, http://www.ncnr.nist.gov/.
[17] B. Fromme, d-d excitations in transition-metal oxides, Springer, 2001.
[18] H. Ibach, J. Electron. Spectrosc. Relat. Phenom. 64/65, 819 (1993).
Chapter 2
[1] A. Kotani and S. Shin, Rev. Mod. Phys. 73, 203 (2001).
[2] R. F. Egerton, Rep. Prog. Phys. 72, 016502 (2009).
[3] T. P. Devereaux, Rev. Mod. Phys. 72, 016502 (2007).
[4] S. H. Chen and M. Kotlarchyk, Interactions of photons and neutrons with matter,
chapter 8-9, World-Scientic, 2007.
[5] G. S. Brown and D. E. Moncton, editors, Handbook on synchrotron radiation, Vol 3,
chapter 15, North-Holland, 1991.
[6] E.-E. Koch, editor, Handbook on synchrotron radiation, Vol 1a, chapter 2, North-
Holland, 1983.
[7] G. V. Marr, editor, Handbook on synchrotron radiation, Vol 2, chapter 1, North-
Holland, 1987.
[8] F. Gel'mukhanov and H. Agren, Phys. Rep. 312, 87 (1999).
[9] H. S. Fung et al., AIP Conf. Proc. 705, 655 (2004).
[10] T. C. Tseng et al., J. Synchrotron Rad. 10, 450 (2003).
[11] M. Kato et al., J. Elec. Spec. Rel. Phen. 160, 39 (2007).
Chapter 3
[1] M. Fiebig et al., Phys. Rev. Lett. 87, 137202 (2001).
[2] G. A. Sawatzky and J. W. Allen, Phys. Rev. Lett. 53, 2339 (1984).
[3] B. Fromme, C. Koch, R. Deussen, and E. Kisker, Phys. Rev. Lett. 75, 693 (1995).
[4] R. Newman and R. M. Chrenko, Phys. Rev. 114, 1507 (1959).
[5] G. Ghiringhelli et al., J. Phys. Condens. Matter 17, 5397 (2005).
[6] G. Racah, Phys. Rev. 62, 438 (1942).
[7] D. A. Cruse et al., CAMMAG, A FORTRAN Computer Package, University Chemical
Laboratory, Cambridge, England, 1979.
[8] http://wwwchem.uwimona.edu.jm/courses/Tanabe-Sugano/TSintro.html.
[9] F. M. F. de Groot, P. Kuiper, and G. A. Sawatzky, Phys. Rev. B 57, 14584 (1998).
[10] G. Ghiringhelli et al., Phys. Rev. Lett. 102, 027401 (2009).
[11] M. Matsubara, T. Uozumi, A. Kotani, and J. C. Parlebas, J. Phys. Soc. Japan 74,
2052 (2005).
[12] M. Magnuson, S. M. Butorin, A. Agui1, and J. Nordgren, J. Phys. Condens. Matter
14, 3669 (2002).
[13] A. Kotani et al., Rad. Phys. Chem. 75, 1670 (2006).
[14] G. Ghiringhelli et al., Phys. Rev. B 73, 035111 (2006).
Chapter 4
[1] G. Lee and S.-J. Oh, Phys. Rev. B 43, 14674 (1991).
[2] L. Messick, W. C. Walker, and R. Glosser, Phys. Rev. B 6, 3941 (1972).
[3] G. W. Pratt and R. Coelho, Phys. Rev. 116, 281 (1959).
[4] B. Fromme, d-d excitations in transition-metal oxides, Springer, 2001.
[5] http://wwwchem.uwimona.edu.jm/courses/Tanabe-Sugano/TSintro.html.
[6] M. Magnuson, S. M. Butorin, J.-H. Guo, and J. Nordgren, Phys. Rev. B 65, 205106
(2002).
[7] S. G. Chiuzbaian et al., Phys. Rev. B 78, 245102 (2008).
[8] J. P. Kemp, S. T. P. Davies, and P. A. Cox, J. Phys. Condens. Matter 1, 5313 (1989).
[9] A. Gorschluter and H. Merz, Phys. Rev. B 49, 17293 (1994).
[10] B. Fromme, M. Moller, C. Bethke, U. Brunokowski, and E. Kisker, Phys. Rev. B 57,
12069 (1998).
[11] S. Shi and V. Staemmler, Phys. Rev. B 52, 12345 (1995).
[12] J. van Elp et al., Phys. Rev. B 44, 6090 (1991).
[13] C. de Graaf, W. A. de Jong, R. Broer, and W. C. Nieuwpoort, Chem. Phys. 237, 59
(1998).
[14] M. Matsubara, T. Uozumi, A. Kotani, Y. Harada, and S. Shin, J. Phys. Soc. Japan
69, 1558 (2000).
Chapter 5
[1] H. S. Fung et al., AIP Conf. Proc. 705, 655 (2004).
[2] M. Magnuson, S. M. Butorin, A. Agui1, and J. Nordgren, J. Phys. Condens. Matter
14, 3669 (2002).
[3] A. Kotani et al., Rad. Phys. Chem. 75, 1670 (2006).
[4] M. Magnuson, S. M. Butorin, J.-H. Guo, and J. Nordgren, Phys. Rev. B 65, 205106
(2002).
[5] S. G. Chiuzbaian et al., Phys. Rev. B 78, 245102 (2008).