研究生: |
連炳鈞 Lian, Bing-Jun |
---|---|
論文名稱: |
甘胺酸-精胺酸及脯胺酸-精胺酸二胜肽重複序列及其與短單股去氧核醣核酸複合之水溶液結構研究 Study of the Solution Structures of Proline-Arginine and Glycine-Arginine Dipeptide Repeats and their Binding with Short Single-Strand Deoxyribonucleic Acids |
指導教授: |
鄭有舜
Jeng, U-Ser |
口試委員: |
蘇安仲
Su, An-Chung 陳韻如 Chen, Yun-Ru 葉奕琪 Yeh, Yi-Qi 施怡之 Shih, Orion |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 小角度 X 光散射 、分子結構模擬 、螺旋結構 、二胜肽重複序列之溶液結構 |
外文關鍵詞: | Small-Angle X-Ray Scattering, Rosetta-SAXS, Helical Structure, Solution Conformations of Dipeptide Repeats |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二胜肽重複序列 (Dipeptide Repeats, DPRs) 源自於 GGGGCC 六核苷酸擴張 (G4C2 expansion) 經重覆關連之非 ATG 起始之轉譯而成,由正義股 (Sense sequence) 產生甘胺酸-精胺酸 (poly Glycine-Arginine)、甘胺酸-丙胺酸 (poly Glycine-Alanine) 及甘胺酸-脯胺酸 (poly Glycine-Proline);反義股 (Antisense sequence) 產生脯胺酸-精胺酸 (poly Proline- Arginine) 、脯胺酸-丙胺酸 (poly Proline-Alanine) 及甘胺酸-脯胺酸 (poly Glycine-Proline) 。先前研究指出二胜肽重複序列是額顳葉失智症 (Frontotemporal Dementia, FTD) 及肌萎縮側索硬化症 (Amyotrophic Lateral Sclerosis, ALS) 之發病原因之一,目前證據顯示其細胞毒性或許與其在水溶液中的結構相關,但機制仍未確定。本實驗室先前已成功解析出poly Glycine-Arginine (GR)n (n = 5、10、15、20、25、30) 之結構,發現當 n ≥ 20 時,會開始形成軟螺旋結構,但並非為 α-螺旋。本研究主要利用先前發展的水溶液小角度 X 光散射 (SAXS) 結合分子結構模擬的方法探討水溶液中進一步探討poly Proline- Arginine (PR)10、(PR)30、(GR)25-1 及 (GR)25-2結構的差異性並以此理解與細胞毒性之相關性。由結果得知 (PR)30 比先前已解析出來之 (GR)30 的軟螺旋結構更延伸,但無明顯之螺旋結構;(PR)10 與先前已解析出的 (GR)10皆無螺旋結構產生,但 (PR)10 的結構較為鬆散。造成結構較為鬆散的之原因推測為較大的脯胺酸 (Proline) 主鏈結構無法如甘胺酸 (Glycine) 主鏈配合精胺酸 (Arginine) 之帶電側鏈螺旋排列以有效降低自由能之故。為證實此以推測,我們再在 (GR)25 中在不同位置選擇性置換一至兩個 GR 為 GP 序列,並觀測其相對應的結構改變。結果顯示, (GR)12-GP-(GR)12, (GR)25-1 及 (GR)8-GP-(GR)7-GP-(GR)8, (GR)25-2,會因為脯胺酸之序列重複長度改變而減少其螺旋結構,歸因於中間有 (GP) 序列阻擋螺旋結構的形成,由圓二色性分析 (CD) 觀察結果發現也有類似二級結構減少的結果。這些結構的特徵與差異性或許對詮釋 (GR)n、(PR)n 兩者在細胞毒性的不同機制表現上有所啟發。本研究中也嘗試結合靜態光散射儀 (MALS)、場流分離系統 (AF4) 及折射儀 (RI),進行 (GR)25 與短單股DNA 序列 (AC)3 之複合結構分子量測量,以確定兩者之間的結合比列狀況。雖然我們成功地組合此系統,並能進行牛血清蛋白及細胞色素 C 的分子量量測達 1-5 % 準確度,然而由於 (GR)25-(AC)3 之複合物體積小且樣品濃度不足,並未能量測到足夠的光散射訊號導致無法決定此複合體分子量。
Dipeptide Repeats (DPRs) are derived from the transcription of an infected gene chromosome 9 open reading frame 72 (C9ORF72) in the brain or spinal cord of the patients of familial Frontotemporal Dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS). The sense sequence translates into poly Glycine-Arginine (GR)n, poly Glycine-Alanine (GA)n and poly Glycine-Proline (GP)n ; antisense sequence translates into poly Proline-Arginine (PR)n, poly Proline-Alanine (PA)n and poly Glycine-Proline (GP)n. Current research shows that different DPRs have different cytotoxicity in aqueous solutions. Previous research in our research group resolved the structure of (GR)n (n = 5, 10, 15, 20, 25, 30) and found helical structure formation when n ≥ 20; which is less compact as that of α-helix. This study aims to provide the structure of (PR)10 and (PR)30 using small-angle X-ray scattering combined with the protocol of molecular structure simulation, Rosetta-SAXS. The result shows that (PR)30 is more extended than (GR)30 resolved previously, but with less helix structural features compared to the latter. (PR)10 has a relatively extend structure with no helix features, compared to the globular (GR)10 of also no helical structure. The reason for the loose structure is attributed to steric effects of the fifth member-ring of Proline, which frustrates formation of helix structures of (PR)n. To examine the proposed mechanism, we have selectively mutated 1 or 2 GR-DPR with GP-DPR for (GR)12-GP-(GR)12, (GR)25-1, and (GR)8-GP-(GR)7-GP-(GR)8, (GR)25-2, to suppress formation of helical structure. The result indeed shows that there is largely reduced helical structure in (GR)25-2, which result supports the steric effects proposed. The structural differences revealed in this study might provide important insights in the interpretation of the different behaviors of the two DPRs of (GR)n and (PR)n in cell toxicity. We have also integrated measurements of multi-angle light scattering, asymmetric flow field-flow fractionation, and the combined spectroscopy of UV-vis adsorption and refraction index, in an integrated system, in an attempt to determine the molecular weight of the complex of (GR)25 and single-strand DNA (AC)3, and deduce their binding ratio. Although, we have successfully intergraded the system and determined the molecular masses of bovine serum albumin (66.5 kDa) and cytochrome C (12.3 kDa) to a mass resolution of 1-5%. The system, however, could not determine the molecular weight of (GR)25-(AC)3, due presumably to low intensity of light scattering with the insufficient sample concentration used.
1. Zu, T.; Gibbens, B.; Doty, N. S.; Gomes-Pereira, M.; Huguet, A.; Stone, M. D.; Margolis, J.; Peterson, M.; Markowski, T. W.; Ingram, M. A., Non-ATG–initiated translation directed by microsatellite expansions. Proceedings of the National Academy of Sciences 2011, 108 (1), 260-265.
2. Zu, T.; Liu, Y.; Bañez-Coronel, M.; Reid, T.; Pletnikova, O.; Lewis, J.; Miller, T. M.; Harms, M. B.; Falchook, A. E.; Subramony, S. H.; Ostrow, L. W.; Rothstein, J. D.; Troncoso, J. C.; Ranum, L. P. W., RAN proteins and RNA foci from antisense transcripts in <em>C9ORF72</em> ALS and frontotemporal dementia. Proceedings of the National Academy of Sciences 2013, 110 (51), E4968-E4977.
3. Mann, D. M.; Rollinson, S.; Robinson, A.; Callister, J. B.; Thompson, J. C.; Snowden, J. S.; Gendron, T.; Petrucelli, L.; Masuda-Suzukake, M.; Hasegawa, M., Dipeptide repeat proteins are present in the p62 positive inclusions in patients with frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72. Acta neuropathologica communications 2013, 1 (1), 68.
4. Mori, K.; Weng, S.-M.; Arzberger, T.; May, S.; Rentzsch, K.; Kremmer, E.; Schmid, B.; Kretzschmar, H. A.; Cruts, M.; Van Broeckhoven, C., The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 2013, 339 (6125), 1335-1338.
5. May, S.; Hornburg, D.; Schludi, M. H.; Arzberger, T.; Rentzsch, K.; Schwenk, B. M.; Grässer, F. A.; Mori, K.; Kremmer, E.; Banzhaf-Strathmann, J., C9orf72 FTLD/ALS-associated Gly-Ala dipeptide repeat proteins cause neuronal toxicity and Unc119 sequestration. Acta neuropathologica 2014, 128 (4), 485-503.
6. Yamakawa, M.; Ito, D.; Honda, T.; Kubo, K.-i.; Noda, M.; Nakajima, K.; Suzuki, N., Characterization of the dipeptide repeat protein in the molecular pathogenesis of c9FTD/ALS. Human molecular genetics 2015, 24 (6), 1630-1645.
7. Schludi, M. H.; May, S.; Grässer, F. A.; Rentzsch, K.; Kremmer, E.; Küpper, C.; Klopstock, T.; Alliance, B. B. B.; Arzberger, T.; Edbauer, D., Distribution of dipeptide repeat proteins in cellular models and C9orf72 mutation cases suggests link to transcriptional silencing. Acta neuropathologica 2015, 130 (4), 537-555.
8. Darling, A. L.; Breydo, L.; Rivas, E. G.; Gebru, N. T.; Zheng, D.; Baker, J. D.; Blair, L. J.; Dickey, C. A.; Koren III, J.; Uversky, V. N., Repeated repeat problems: Combinatorial effect of C9orf72-derived dipeptide repeat proteins. International journal of biological macromolecules 2019, 127, 136-145.
9. Donnelly, C. J.; Zhang, P.-W.; Pham, J. T.; Haeusler, A. R.; Mistry, N. A.; Vidensky, S.; Daley, E. L.; Poth, E. M.; Hoover, B.; Fines, D. M., RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 2013, 80 (2), 415-428.
10. Gendron, T. F.; Bieniek, K. F.; Zhang, Y.-J.; Jansen-West, K.; Ash, P. E.; Caulfield, T.; Daughrity, L.; Dunmore, J. H.; Castanedes-Casey, M.; Chew, J., Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS. Acta neuropathologica 2013, 126 (6), 829-844.
11. Freibaum, B. D.; Taylor, J. P., The role of dipeptide repeats in C9ORF72-related ALS-FTD. Frontiers in molecular neuroscience 2017, 10, 35.
12. Mizielinska, S.; Grönke, S.; Niccoli, T.; Ridler, C. E.; Clayton, E. L.; Devoy, A.; Moens, T.; Norona, F. E.; Woollacott, I. O.; Pietrzyk, J., C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science 2014, 345 (6201), 1192-1194.
13. Wen, X.; Tan, W.; Westergard, T.; Krishnamurthy, K.; Markandaiah, S. S.; Shi, Y.; Lin, S.; Shneider, N. A.; Monaghan, J.; Pandey, U. B., Antisense proline-arginine RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal death. Neuron 2014, 84 (6), 1213-1225.
14. Freibaum, B. D.; Lu, Y.; Lopez-Gonzalez, R.; Kim, N. C.; Almeida, S.; Lee, K.-H.; Badders, N.; Valentine, M.; Miller, B. L.; Wong, P. C., GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 2015, 525 (7567), 129.
15. Lee, K.-H.; Zhang, P.; Kim, H. J.; Mitrea, D. M.; Sarkar, M.; Freibaum, B. D.; Cika, J.; Coughlin, M.; Messing, J.; Molliex, A., C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell 2016, 167 (3), 774-788. e17.
16. Svergun, D. I., Small-angle X-ray and neutron scattering as a tool for structural systems biology. Biological chemistry 2010, 391 (7), 737-743.
17. Hura, G. L.; Menon, A. L.; Hammel, M.; Rambo, R. P.; Poole Ii, F. L.; Tsutakawa, S. E.; Jenney Jr, F. E.; Classen, S.; Frankel, K. A.; Hopkins, R. C., Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nature methods 2009, 6 (8), 606-612.
18. Mertens, H. D.; Svergun, D. I., Structural characterization of proteins and complexes using small-angle X-ray solution scattering. Journal of structural biology 2010, 172 (1), 128-141.
19. Jacques, D. A.; Trewhella, J., Small‐angle scattering for structural biology—Expanding the frontier while avoiding the pitfalls. Protein science 2010, 19 (4), 642-657.
20. Grant, T. D.; Luft, J. R.; Wolfley, J. R.; Tsuruta, H.; Martel, A.; Montelione, G. T.; Snell, E. H., Small angle X‐ray scattering as a complementary tool for high‐throughput structural studies. Biopolymers 2011, 95 (8), 517-530.
21. Putnam, C. D.; Hammel, M.; Hura, G. L.; Tainer, J. A., X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Quarterly reviews of biophysics 2007, 40 (3), 191-285.
22. Rambo, R. P.; Tainer, J. A., Characterizing flexible and intrinsically unstructured biological macromolecules by SAS using the Porod‐Debye law. Biopolymers 2011, 95 (8), 559-571.
23. Koch, M. H.; Vachette, P.; Svergun, D. I., Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution. Quarterly reviews of biophysics 2003, 36 (2), 147.
24. Feigin, L.; Svergun, D. I., Structure analysis by small-angle X-ray and neutron scattering. Springer: 1987; Vol. 1.
25. Bernadó, P., Effect of interdomain dynamics on the structure determination of modular proteins by small-angle scattering. European Biophysics Journal 2010, 39 (5), 769-780.
26. Rambo, R. P.; Tainer, J. A., Bridging the solution divide: comprehensive structural analyses of dynamic RNA, DNA, and protein assemblies by small-angle X-ray scattering. Current opinion in structural biology 2010, 20 (1), 128-137.
27. Schneidman-Duhovny, D.; Kim, S. J.; Sali, A., Integrative structural modeling with small angle X-ray scattering profiles. BMC structural biology 2012, 12 (1), 17.
28. Sampathkumar, P.; Ozyurt, S. A.; Do, J.; Bain, K. T.; Dickey, M.; Rodgers, L. A.; Gheyi, T.; Sali, A.; Kim, S. J.; Phillips, J., Structures of the autoproteolytic domain from the Saccharomyces cerevisiae nuclear pore complex component, Nup145. Proteins 2010, 78 (8), 1992.
29. 林楷泰, 利用小角度 X 光散射結合分子動力學模擬研究水溶液中甘胺酸-精胺酸二胜肽重複序列之結構及其與脫氧核醣核酸之複合體結構. 清華大學化學工程學系學位論文 2019, 1-84.
30. Chang, Y.-J.; Jeng, U.-S.; Chiang, Y.-L.; Hwang, S.; Chen, Y.-R., The glycine-alanine dipeptide repeat from C9orf72 hexanucleotide expansions forms toxic amyloids possessing cell-to-cell transmission properties. Journal of Biological Chemistry 2016, 291 (10), 4903-4911.
31. Yamashita, H.; Kato, T.; Oba, M.; Misawa, T.; Hattori, T.; Ohoka, N.; Tanaka, M.; Naito, M.; Kurihara, M.; Demizu, Y., Development of a cell-penetrating peptide that exhibits responsive changes in its secondary structure in the cellular environment. Scientific reports 2016, 6, 33003.
32. Flores, B. N.; Dulchavsky, M. E.; Krans, A.; Sawaya, M. R.; Paulson, H. L.; Todd, P. K.; Barmada, S. J.; Ivanova, M. I., Distinct C9orf72-associated dipeptide repeat structures correlate with neuronal toxicity. PloS one 2016, 11 (10), e0165084.
33. Compton, L. A.; Johnson Jr, W. C., Analysis of protein circular dichroism spectra for secondary structure using a simple matrix multiplication. Analytical biochemistry 1986, 155 (1), 155-167.
34. Roe, R.-J.; Roe, R., Methods of X-ray and neutron scattering in polymer science. Oxford university press New York: 2000; Vol. 739.
35. Receveur-Bréchot, V.; Durand, D., How random are intrinsically disordered proteins? A small angle scattering perspective. Current Protein and Peptide Science 2012, 13 (1), 55-75.
36. Franke, D.; Petoukhov, M.; Konarev, P.; Panjkovich, A.; Tuukkanen, A.; Mertens, H.; Kikhney, A.; Hajizadeh, N.; Franklin, J.; Jeffries, C., ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. Journal of applied crystallography 2017, 50 (4), 1212-1225.
37. Konarev, P. V.; Volkov, V. V.; Sokolova, A. V.; Koch, M. H.; Svergun, D. I., PRIMUS: a Windows PC-based system for small-angle scattering data analysis. Journal of applied crystallography 2003, 36 (5), 1277-1282.
38. Svergun, D., Determination of the regularization parameter in indirect-transform methods using perceptual criteria. Journal of applied crystallography 1992, 25 (4), 495-503.
39. Zhang, Y., I-TASSER server for protein 3D structure prediction. BMC bioinformatics 2008, 9 (1), 40.
40. Roy, A.; Kucukural, A.; Zhang, Y., I-TASSER: a unified platform for automated protein structure and function prediction. Nature protocols 2010, 5 (4), 725.
41. Yang, J.; Zhang, Y., I-TASSER server: new development for protein structure and function predictions. Nucleic acids research 2015, 43 (W1), W174-W181.
42. Sønderby, P.; Rinnan, Å.; Madsen, J. J.; Harris, P.; Bukrinski, J. T.; Peters, G. n. H., Small-angle X-ray scattering data in combination with RosettaDock improves the docking energy landscape. Journal of chemical information and modeling 2017, 57 (10), 2463-2475.
43. Perkampus, H.-H., UV-VIS Spectroscopy and its Applications. Springer Science & Business Media: 2013.
44. Aitken, A.; Learmonth, M. P., Protein determination by UV absorption. In The protein protocols handbook, Springer: 2009; pp 3-6.
45. Cavaluzzi, M. J.; Borer, P. N., Revised UV extinction coefficients for nucleoside‐5′‐monophosphates and unpaired DNA and RNA. Nucleic acids research 2004, 32 (1), e13-e13.
46. Zhao, H.; Brown, P. H.; Schuck, P., On the distribution of protein refractive index increments. Biophysical journal 2011, 100 (9), 2309-2317.
47. Nobbmann, U., Refractive Index Increment dndc for proteins, polymers SLS. 2013.
48. Williams, K. WHAT IS A DN/DC VALUE AND WHY IS IT IMPORTANT FOR GPC/SEC?|Materials Talks. https://www.materials-talks.com/blog/2018/08/22/what-is-a-dndc-value-and-why-is-it-important-for-gpcsec/.
49. Giddings, J. C.; Yang, F.; Myers, M. N., Flow-field-flow fractionation: a versatile new separation method. Science 1976, 193 (4259), 1244-1245.
50. Giddings, J. C., Field-flow fractionation: analysis of macromolecular, colloidal, and particulate materials. Science 1993, 260 (5113), 1456-1465.
51. Chu, B., Laser light scattering: basic principles and practice. Courier Corporation: 2007.