簡易檢索 / 詳目顯示

研究生: 陳敏慧
Min-Hui Chen
論文名稱: 平板型大氣電漿束之特性分析
Characterization of an atmospheric pressure planar plasma jet
指導教授: 寇崇善
Chwung-Shan Kou
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 56
中文關鍵詞: 大氣電漿束平板型
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前傳統的低壓電漿源已經廣泛的應用在各個領域中,但由於低壓電漿源需要昂貴的真空設備系統,且處理材料的尺寸會受到真空系統的限制,所以對附加價值較低且需要大產量的傳統產業,例如紡織業與造紙業等,其應用成本偏高而未具競爭力。因此未來希望能夠以操作成本低、處理速度快的大氣電漿源來取代。由於目前已經發展出的大氣電漿源,如電漿火炬、暈光放電和介質屏蔽放電,都有高溫或低均勻性的問題,而低溫且均勻度高的圓柱型大氣電漿束在材料處理上又受限於噴焰面積小,處理效率低。因此,本實驗致力於發展出低溫、均勻且大面積的平板型大氣電漿束。本研究的重點在於利用Langmuir probe、V-I probe、OES和Contact angle等量測工具來量測平板型大氣電漿束的基本特性,包括腔體的電漿密度和噴焰的電漿密度、電子溫度,並對產生的活性粒子作分析。實驗中通入氦氣和氬氣,並且藉由改變輸入功率和氣體流量來探討電漿特性的變化。實驗結果發現,平板型大氣電漿束的腔體內部電漿密度約為1011-1012cm-3,而噴焰部分的電漿密度約為108cm-3;電子溫度為2-6eV。電漿中的活化粒子以原子自由基為主。此外,在材料處理方面,經由電漿處理後的PCB板和FR4板,接觸角都大幅下降,且極性表面能也獲得大量的提高。


    第一章 簡介 1.1 前言 1.2 大氣電漿源 1.3 PCB 簡介 1.4 研究目的與方向 第二章 實驗設備系統 2.1 匹配線路 2.2 本體 2.3 量測系統 2.3.1 V-I probe量測系統 2.3.2 Langmuir probe量測系統 2.3.3 OES量測系統 2.3.4 表面能量測系統 第三章 理論分析 3.1 V-I probe 理論分析及數據計算 3.1.1 理論分析 3.1.2 數據計算 3.2 Langmuir probe 理論分析及數據計算 3.2.1 理論分析 3.2.2 數據計算 3.3 Drift oscillation 3.4 表面能理論分析 3.4.1 接觸角 3.4.2 表面自由能 3.4.3 數據計算 第四章 實驗結果及討論 4.1 電漿基本特性量測 4.1.1 V-I probe數據分析 4.1.2 Langmuir probe數據分析 4.1.3 特性光譜分析 4.2 材料處理 第五章 結論 參考文獻

    [1] Andreas Sch tze , James Y. Jeong , Steven E. Babayan , “The atmospheric Pressure Plasma Jet: A Review and Comparison to Other Plasma Sources”,
    IEEE Trans. Plasma Sci. , vol 26 , pp. 1685-1998, Dec. 1998.
    [2] P. Fauchais and A. Vardelle, “ Thermal plasmas ”, IEEE Trans. Plasma Sci. ,
    vol. 25 , pp. 1258-1280 , Dec. 1997.
    [3] M.Goldman and R.S. Sigmond, “Corona and insulation”, IEEE Trans. Elect. Insulation. , vol. EI-17, no. 2, pp.90-105 , 1982.
    [4] B. Emission and U. Kogelschatz, “Modeling and applicaiotn of silent discharge plasma”, IEEE Trans. Plasma Sci. , vol.19 , pp. 309-323 , Apr. 1991.
    [5] J.Y. Jeong , S.E. Babayan, V.J. Tu, J. Park, “Etching materials with an atmospheric pressure plasma jet” , Plasma Source Sci. Technol. , vol. 7, no. 3, pp.282-285,1998.
    [6] G.S. Selwyn, H.W. Herrmann, J. Park, and I. Henins, “Materials Processing Using an Atmospheric Pressure,RF-Generated Plasma Source”, Contrib. Plasma Phys. vol. 6 , pp.610-619, 2001.
    [7] Michale A. Lieberman, Allan J. Lichtenberg, Principle of Plasma Discharge and Materials Processing.
    [8] Francis F. Chen, Introduction to Plasma Physics.
    [9] Yuri P. Raizer , Gas Discharge Physics.
    [10] L.Schott , “Electric Probe in Plasma Diagnostic”, AIP Press , New York,1995.
    [11] F. F. Chen, “Plasma Diagnostic Techniques, Chap 4 ”,edited by R.H. Huddle and S.L. Leonard (Academic, New York,1995)
    [12] Billy H.,Johnson and David L.,“Plasma Velocity Determination by Electrostatic Probes”, AIAA Journal ,vol. 7 , pp.2028-2030
    [13] 吳倉聚博士論文,微波激發之大面積高密度表面波電漿源之研究,2000年7月
    [14] J Reece Roth, “Industrial Plasma Engineering,” Vol.2 Chap 20.6
    [15] Pascal Hubert and Yves Galerne, “Surface tension and anchoring transitions of nematic liquid crystals on gradually oxidized substrates ”, Appl. phys. Lett. ,vol. 71, pp.1050-1052 , Aug. 1997.
    [16] Sharma, P.K. and Hanumantha Rao, K. “Analysis of different approaches for evaluation of surface energy of microbial cells by contact angle goniometry”, Adv. Colloid Interfac., vol. 98, pp.341-463,2002.
    [17] R.J. Good, “Treatise on Adhesion and Adhesives”, Marcel Dekker , New York,1967.
    [18] S. Wu, “Polymer Interface and Adhesion”, Marcel Dekker , New York ,1982.
    [19] Xiaohui Yuan and Laxminarayan L.Raja , “ Computation Study of Capacitively Coupled High-Pressure Glow Discharges in Helium”, IEEE Trans. Plasma Sci. , vol. 31 , pp.495-503 , Aug. 2003.
    [20] G. Nersisyan and W.G. Graham, “Characterization of a dielectric barrier discharge operating in an open reactor with flowing helium ”,Plasma Sources Sci. Technol. vol.13 , pp.582-587,2004.
    [21] M Moravej , X Yang , M Barankin , J Penelon , “Properties of an atmospheric pressure radio-frequency argon and nitrogen plasma”, Plasma Sources Sci. Technol. vol.15 , pp.204-210,2006.

    [22] G.M. Petrov and C.M. Ferreira, “ Numerical modeling of the dc positivite column in rare gases”, Phys.Rev. E ,vol. 59, pp.3571-3582, Mar.1999.

    [23] C.M. Chan, T.M. Ko, H. Hiraoka, “Polymer surface modification by plasmas and photons”, Surface Science Report, vol. 24, pp.1-54,1996.
    [24] J.Ge, M.P.K. Turunen, J.K. Kivilahti , “Surface modification and characterization of photodefinable epoxy/copper systems”, Reprinted from Thin Solid Films, vol. 440, pp. 198-207, 2003.
    [25] J. Gea and M.P.K. Turunen, “Effects of surface treatment on the adhesion of copper to a hybrid polymer material”, Journal of Materials Research, vol. 18, pp. 2697-2707,2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE