簡易檢索 / 詳目顯示

研究生: 包明麒
Ming-Chi Pao
論文名稱: 改良式共光程外差干涉術應用於表面電漿共振感測器之研究
Surface plasmon resonance sensors based on a new heterodyne interferometry
指導教授: 吳見明
Ching-Ming Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 69
中文關鍵詞: 共光程外差干涉表面電漿共振感測器
外文關鍵詞: common-path, heterodyne interferometry, surface plasmon resonance, sensor
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將以各種不同的實驗架構和量測方法,應用於表面電漿共振感測器的研究與發展上。其實驗架構分為強度量測架構、共光程外差干涉架構、以及改良式共光程外差干涉架構,而量測方法也分為傳統的強度量測法、干涉強度量測法、以及干涉相位量測法。其中改良式外差干涉術,為我們最新提出的量測方式,是在共光程外差干涉儀中,加入兩個四分之一波片,藉此增加我們量測折射率的靈敏度。
    我們將對各個實驗架構,作理論的推導和圖形的模擬,並配合實驗量測數據,以比較各系統和量測方法之間的差異及好壞,之後並使用干涉架構來作蛋白質與蛋白質的結合實驗,期望未來能將此架構應用於生醫量測上。本篇論文證實了我們提出的改良式外差干涉術量測相位的方式,應用於表面電漿共振感測器的量測上,是目前最靈敏的量測架構和方法,其理論的折射率靈敏度估算可達4×10-9RIU(refractive index unit),而實驗的數值也可達3.4×10-6RIU。至於蛋白質的量測方面,最低感測濃度可達0.3μg/ml。


    The investigation of surface plasmon resonance by several measurement systems based on the measurement of intensity or the measurement of phase are described in this dissertation. The measurement systems consist of (1) an optical intensity-based system, (2) an intensity-based interferometric system, (3) a heterodyne interferometric system, and (4) a novel common-path heterodyne interferometric system. The former two are based on the measurement of intensity while the others are based one the measurement of phase. Among them, the novel common-path heterodyne interferometric system, which is built with a pair of quarter waveplates to improve the measurement sensitivity, is my original design.
    The surface plasmon resonance for each measurement system is theoretical and experiment verified. The results from each system are used to make a comparism. In effect, the most sensitive one is my original design, the novel common-path heterodyne interferomatic system. The measurement resolution of refractive index for this system is theoretically estimated to be 4×10-9RIU(refractive index unit). An experiment result of 3.4×10-6RIU has been achieved by this study. Furthermore, a protein-protein interaction experiment is also included. So far, the detection limit for protein of 0.3μg/ml has been obtained. Both the measurement resolution and the detection limit for protein have a great space to improve in the near future.

    中文摘要………………………………………………………………Ⅰ 英文摘要………………………………………………………………Ⅱ 誌謝……………………………………………………………………Ⅲ 目錄……………………………………………………………………Ⅳ 圖目錄…………………………………………………………………Ⅵ 表目錄…………………………………………………………………Ⅷ 第一章 緒論………………………………………………………….1 第二章 共光程外差干涉儀基本原理……………………………….2 2.1 前言……………………………………………………………2 2.2 共光程外差干涉儀原理………………………………………3 2.3 共光程外差干涉儀基本架構…………………………………5 2.4 參考文獻………………………………………………………6 第三章 表面電漿共振化學生醫感測器…………………………….7 3.1 前言……………………………………………………………7 3.2 SPR理論介紹………………………………………………….9 3.3 實驗設計……………………………………………………..12 3.4 系統實驗架構………………………………………………..12 3.4-1 量測TM mode反射強度架構………………………….12 3.4-2 全反射TIR理論………………………………………...17 3.4-3 共光程外差干涉結合表面電漿共振量測系統………...19 3.4-4 加入四分之一波片的光路架構………………………...26 3.5 實驗結果與討論……………………………………………..38 3.6 結論…………………………………………………………..51 3.7 參考文獻……………………………………………………..52 第四章 表面電漿共振蛋白質交互作用感測器…………………….56 4.1 前言…………………………………………………………..56 4.2 實驗架構及方法……………………………………………..57 4.3 實驗結果與討論……………………………………………..58 4.4 結論…………………………………………………………..66 4.5 參考文獻……………………………………………………..67 第五章 結論………………………………………………………….68 圖 目 錄 圖 2.1 共光程外差干涉儀的干涉原理…………………………………………..…3 圖 2.2 共光程外差干涉儀的基本架構……………………………………………..5 圖 3.1 稜鏡耦合之ATR配置方式………………………………………………...10 圖 3.2 光強度實驗架構示意圖…………………………………….………………13 圖 3.3 當代測物為空氣時,P-偏光隨入射角度的變化曲線………..…………...14 圖 3.4 入射角度定於43.7°,量測P-偏光強度隨時間變化圖…...……………....14 圖 3.5 當代測物為濃度%甲醇時,P-偏光隨入射角度的變化曲線………….….16 圖 3.6 量測不同濃度的甲醇(1%→2%→1%),其P-偏光強度隨時間的變化…..16 圖 3.7 在直角稜鏡上,全反射的光路………………………………………….….18 圖 3.8 入射角度θ1時,P-偏光與-偏光相位差的理論模擬…………………..….18 圖 3.9 干涉實驗架構示意圖………………………………………………………..19 圖 3.10 當代測物為空氣時,干涉訊號強度隨入射角度的變化曲線…………….21 圖 3.11 入射角度定於43.5°,量測干涉訊號強度隨時間變化圖……..…………..21 圖 3.12 當代測物為空氣時,干涉訊號相位隨入射角度的變化曲線…………….22 圖 3.13 入射角度定於43.9°,量測干涉訊號相位隨時間變化圖…………………22 圖 3.14 當代測物為濃度1%甲醇時,干涉訊號強度隨入射角度的變化曲線……24 圖 3.15 量測不同濃度的甲醇(1%→2%→1%),其干涉訊號強度隨時間的變化…24 圖 3.16 當代測物為濃度1%甲醇時,干涉訊號相位隨入射角度的變化曲線……25 圖 3.17 量測不同濃度的甲醇(1%→2%→1%),其干涉訊號相位隨時間的變化…25 圖 3.18 加入四分之一波片,干涉實驗架構示意圖………………………………..26 圖 3.19 有無四分之一波片,相位差對上入射角度曲線變化模擬圖……………...32 圖 3.20 當代測物為空氣時,干涉訊號強度(加入1/4λ)隨入射角度的變化曲線..33 圖 3.21 入射角度定於43.6°,量測干涉訊號強度(加入1/4λ)隨時間變化圖…….33 圖 3.22 當代測物為空氣時,干涉訊號相位(加入1/4λ)隨入射角度的變化曲線..34 圖 3.23 入射角度定於443°,量測干涉訊號相位(加入1/4λ)隨時間變化圖……..34 圖 3.24 當代測物為濃度1%甲醇時,干涉訊號強度(加入1/4λ)隨入射角度的變 化曲線……………………………………………………………………….36 圖 3.25 量測不同濃度的甲醇(1%→2%→1%),其干涉訊號強度(加入1/4λ)隨時 間的變化…………………………………………………………………….36 圖 3.26 當代測物為濃度1%甲醇時,干涉訊號相位(加入1/4λ)隨入射角度的變 化曲線……………………………………………………………………….37 圖 3.27 量測不同濃度的甲醇(1%→2%→1%),其干涉訊號相位(加入1/4λ)隨時 間的變化…………………………………………………………………….37 圖 3.28 旋轉四分之一波片快軸角度模擬圖………………………………………..42 圖 3.29 旋轉四分之一波片快軸角度實驗圖………………………………………..43 圖 3.30 吸附層(absorbed layer)厚度對靈敏度和共振角的影響模擬圖…………...45 圖 3.31 吸附層(absorbed layer)厚度對靈敏度和共振角的影響模擬圖…………...46 圖 3.32 金膜厚度不同,其SPR強度反射率對上入射角度的變化模擬曲線…….48 圖 3.33 金膜厚度48nm的理論曲線與實驗數據圖(吸附介質有無的影響)……….49 圖 3.34 金膜厚度48nm的理論曲線與實驗數據圖(金膜介電係數不同的影響)….50 圖 4.1 金膜化學處理前後,入射角度對上相位差曲線圖…………………………58 圖 4.2 以27.5ng/ml 1ml注入flow cell的訊號反應結果圖………………………..59 圖 4.3 以275ng/ml 1ml注入flow cell的訊號反應結果圖……….………………..60 圖 4.4 以2.75μg/ml 1ml注入flow cell的訊號反應結果圖………………………..60 圖 4.5 以27.5μg/ml 1ml注入flow cell的訊號反應結果圖………………………..61 圖 4.6 各個濃度的實驗前後訊號比較圖……………………………………………63 圖 4.7 濃度275ng/ml與濃度2.75μg/ml的比較圖…………………………………64 圖 4.8 蛋白質抗體濃度對上訊雜比的線性關係圖…………………………………65 表 目 錄 表 3.1 金膜(5nmTi+43nmAu)在空氣和二次水中,各種量測方式對照放大率表 示表…………………………………………………………………………..41 表 3.2 圖2.39的放大率計算表……………………………………………………44 表 3.3 金膜(5nmTi+43nmAu)在不同折射率液體(1%、2%甲醇,折射率相 差2×10-4 RI),不同量測方式對應的折射率靈敏度..……………………..47 表 3.4 金膜(5nmTi+40nmAu)在二次水中,各種量測方式對照放大率表示 表……………………………………………………………………………..47 表 4.1 各個蛋白質抗體濃度下,其訊雜比(signal-to-noise ratio;SN ratio)數 值對照表……………………………………………………………………..65

    1. P. Hariharan, “Basics of interferometry”, Academic Press, INC ,67-77、189,1991.
    2. F. Graham Smith and Terry A. King, “Optics and Photonics:An Introduction, John Wiley & Sons”, Ltd,209-211,2000.
    3. Ju-Yi Lee, Der-Chin Su, “Common-path heterodyne interferometric detection scheme for measuring wavelength shift”, Opt. Commun., 162,7-10,1999.
    4. Kun-Huang Chen, Cheng-Chin Hsu, Der-Chin Su, “Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry”, Opt. Commun., 209,167-172,2002.
    5. Jiun-You Lin and Der-Chin Su, “A new type of optical heterodyne polarimeter”, Meas. Sci. Technol., 14,55-58,2003.
    6. Ming-Hong Chiu and Der-Chin Su, “Angle masurement by using the total-refection heterodyne interferometry”, Opt. Eng.,36,1750-1753,1997.
    1.A., Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection”, z.phys , 216,398, 1968.
    2.Heinz Raether, “Surface plasmons on smooth and rough surfaces and on gratings”, Springer-Verlag Berlin Heidelberg, 1988.
    3.Jiri Homola, Sinclair S. Yee, Gunter Gauglitz, “Surface plasmon resonance sensors: reivew”, Sensors and Actuators B, 54,3-15, 1999.
    4.Rebecca J. Green, Richard A, Frazier, Kevin M. Shakesheff, Martyn C. Davies, Clive J. Robertsm, Saul J.B. Tendler. “Review:Surface plasmon resonance analysis of dynamic biological interactions with biomaterials”, Biomaterials, 21, 1823- 1835, 2000.
    5.Neil M. Mulchan, Melvin Rodriguez, Kevin O’Shea, Yesim Darici, “Application of a high-resolution SPR technique for monitoring real-time metal/dielectric interactions” Sensors and Actuators B, 88, 132-137, 2003.
    6.X.-M. Zhu, P.-H. Lin, P. Ao, L.B. Sorensen, “Surface treatments for surface plasmon resonance biosensors”, Sensors and Actuators B, 84, 106-112, 2002.
    7.A.N. Grigorenko, A.A. Beloglazov, P.I. Nikitin, C. Kuhne, G. Steiner, R. Salzer, “Dark-field surface plasmon resonance microscopy”, Opt. Commun., 174, 151-155, 2000.
    8.T. P. Vikinge, A. Askendal, B. Liedberg, T. Lindahl, P. Tengvall, “Immobilized chicken antibodies improve the detection of serum antigens with surface plasmon resonance(SPR)”, Biosensors & Bioelectroniics, 13, 1257-1262, 1998.
    9.Chi-Chun Fong, Man-Sau Wong, Wang-Fun Fong, Mengsu Yamg, “Effect of hydrogel matrix on binding kinetics of protein-protein interactions on sensor surface”, Analytica Chimica Acta, 456, 201-208, 2002.
    10.Dev Kambhampati, Peter E. Nielsen, Wolfgang Knoll, “Investigating the kinetics of DNA-DNA and PNA-DNA interactions using surface plasmon resonance-enhanced fluorescence spectroscopy”. Biosensors & Bioelectronics, 16, 1109-1118, 2001.
    11.Alexander W. Peterson, Richard J. Heaton and Rosina M. Georgiadis. “The effect of surface probe density on DNA hybridization”, Nucleic acids research, vol.29, No.24, 5163-5168, 2001.
    12.Dobrin Nedelkov, Randall W. Nelson, “Analysis of native protein from biological fluids by biomolecular interaction analysis mass spectrometry(BIA/MS): exploring the limit of detection, identification of non-specific binding and detection of multi-protein complexes”, Biosensors & Bioelectronics, 16, 1071-1078, 2001.
    13.Rebecca J. Whelan and Richard N. Zare, “surface plasmon resonance detection for capillary electrophoresis separations”, Anal. Chem., 75, 1542-1547, 2003.
    14.M. T. Flanagan and R. H. Pantell, “Surface plasmon resonance and immunosensors” Electron. Lett., 20,968-970 ,1984.
    15.Yu Xinglong, Zhao Lequn ,Jian Hong, Wang Haojuan ,Yin Chunyong , Zhu Shenggeng, “Immunosensor based on optical heterodyne phase detection”, Sensors and Actuators B, 76, 199-202, 2001.
    16.E. Fontana, R. H. Pantell, and M. Moslehi, “Surface plasmon immunoassay”, Appl. Opt., 29(31), 4694-4704, 1990.
    17.K. Matsubara, et al, “A compact surface plasmon resonance for measurement of water in process”, Appl. Spectrosc., 42, 1375-1379, 1998
    18.www.biacore.com.
    19.www.spreeta.com.
    20.Jose Melendez, Richard Carr, Dwight Barthelomew, Hemant Taneja, Sinclair Yee, Chuck Jung, Clement Furlomg, “Development of a surface plasmon sensor for commercial applications”, Sensors and Actuators B, 38-39, 375-379, 1997.
    21.Jihua Guo, Zhaoming Zhu, Weimin Deng, “Small-angle measurement based on surface-plasmon resonance and the use of magneto-optical modulation”, Appl. Opt., Vol.38, No.31, 6550-6555, 1999.
    22.W. David Wilson, “Analyzing biomolecular interactions”, Science, 295, 2103-2105, 2002.
    23.D. Roy, “Optical characterization of multi-layer thin films using the surface plasmon resonance method:A six-phase model based on the Kretschmann formalism”, Opt. Commun., 200, 119-130, 2001.
    24.Kazuyoshi Kurihara, Kaori Nakamura, Koji Suzuki, “Asymmetric SPR sensors response curve-fitting equation for the accurate determination of SPR resonance angle”, Sensors and Actuators B, 86, 49-57, 2002.
    25.K.S.Johnston, S.R.Karlson, C.Jung and S.S. Yee, “New analytic technique for characterization of thin films using surface plasmon resonance”, Matter. Chem. Phys., 42, 242-246, 1995.
    26.B. Chadwick and M. Gal, “An optical emperature sensor using surface plasmons”, Jpn. J. Appl. Phys, partⅠ, 32, 2716-2717, 1993.
    27.S.G. Nelson, K.S. Johnston, S.S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection”, Sensors and Actuators B, 35-36, 187-191, 1996.
    28.A. V. Kabashin, P. I. Nikitin, “Interferometer based on a surface-plasmon resonance for sensor applications”, Quantum Electronics, 27(7), 653-654, 1997.
    29.Shuai Shen, Tong Liu, and Jihua Guo, “Optical phase-shift detection of surface plasmon resonance”, Applied Optics, Vol.37, No.10, 1747-1751, 1998.
    30.V. E. Kochergin, A. A. Beloglazov, M. V. Valeiko, P I Nikitin, “Phase properties of a surface-plasmon resonance from the viewpoint of sensor applicarions”, Quantum Electronics, 28(5), 444-448, 1998.
    31.A. V. Kabashin, P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors”, Optics Communications, 150, 5-8, 1998.
    32.P. I. Nikitin, A. A. Beloglaziv, V. E. Kochergin, M.V. Valeiko, T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing”, Sensors and Actuators B, 54, 43-50. 1999.
    33.P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M.V. Valeiko, A. I. Savchuk, O.A. Savchuk, G. Steiner, C. Kuhne, A. Huebner, R. Salzer., “Surface plasmon resonance interferometry for micro-array biosensing”, Sensors and Actuators, 85, 189-193, 2000.
    34.Yu Xinglong, Zhao Lequn, Jiang Hong, Wang Haojuan, Yin Chunyong, Zhu Shenggeng, “Immunosensor based on optical heterodyne phase detection”, Sensors and Actuators B, 76, 199-202, 2001.
    35.V. Vaicikauskas, J. Bremer, O. Hunderi, R. Antanavicius, R. Januskevicius, “Optics constants of indium tin oxide films as determined by a surface plasmon phase method”, Thin Solid Films, 411, 262-267, 2002.
    36.Yu Xinglong, Wang Dingxin, Yan Zibo, “Simulation and analysis of surface plasmon resonance biosensor based on phase detection”, Sensors and Actuators B, 91, 285-290, 2003.
    37.A.A.Kruchinin, Yu. G. Vlasov, “Surface plasmon resonance monitoring by means of polarization state measurement in reflected light as the basis of a DNA-probe biosenor”, Sensors and Actuators B, 30, 77-80, 1996.
    1.Jeremy H Lakey and Elaine M Raggett, “Measuring protein-protein interactions”, Structural Biology, 8, 119-123, 1998.
    2.Heng Zhu and Michael Snyder, “Protein chip technology”, Chemical Biology, 7, 55-63, 2003.
    3.Fabienne Deckert and Francois Legay, “Development and Validation of an immunoreceptor assay for simulect based on surface plasmon resonance” Analytucal Biochemistry, 274, 81-89, 1999.
    4.Rebecca J. Whelan, Thorsten Wohland, Lars Neumann, Bo Huang, Brian K. Kobilka, and Richard N. Zare, “Analysis of Biomolecular interactions using a miniaturized surface plasmon resonance sensor”, Anal. Chem., 74, 4570-4576, 2002.
    5.John G. Quinn, Shane O’Neill, Aidan Doyle, Colm McAtamney, Dermot Diamond, Brian D. MacCraith and Richard O’Kennedy, “Development and application of surface plasmon resonance-based biosensors for the detection of cell-ligand interactions”, Analytical Biochemistry, 281, 135-143, 2000.
    6.Renjun Pei, Xiurong Yang, Erhang Wang, “Enhanced surface plasmon resonance immunoassay for human complement factor 4”, Analytuca Chimica Acta, 453, 173-179, 2002.
    7.Hellas Choi Man Yau, Shu Yuen Wu, Ho Pui Ho, Mengsu Yang, “Surface plasmon resonance measurement of pyridoxal kinase-pyridoxamine binding on self-assembled monolayer”, Sensors and Actuators B, 85, 227-231, 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE