簡易檢索 / 詳目顯示

研究生: 呂晉賢
Chin-Hsien Lu
論文名稱: 以光學曲率量測系統研究水氣於聚亞醯胺膜中之行為
Research of the Behavior of Water Vapor in Polyimide Films by Optical Curvature Measurement System
指導教授: 蔡哲正
Cho-Jen Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 66
中文關鍵詞: 聚亞醯胺水氣光學曲率量測
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以高分子單體聚合成鍊而形成之高分子材料已被廣泛的利用;而在科技工業上,高分子材料也佔有一席之地。聚亞醯胺(Polyimide),可使用之溫度範圍極廣,具高耐磨特性,使它成為一種可撓式基材的明星材料;而其光敏感性也使它成為一種光阻材料。然而它具有的吸水性質,也讓空氣中濕度大小在它的使用性上令人擔心。本實驗以光學曲率量測方法量測矽載板鍍上聚亞醯胺膜、在不同相對濕度和不同溫度的影響下、之曲率值的變化。我們先以相同溫度,相對濕度的週期性變化得知聚亞醯胺的吸水行為不因濕度的變化的次數而遞增或衰減;接著比較不同溫度吸水行為在曲率的變化我們無法觀察出顯著的變化,推測原因為溫度差異太小,以致結果不甚明顯;同時我們以傳統之重量量測得到之結果亦為如此。然而,從此差異不大之結果,我們觀察到會影響吸水熱力學行為之因素為相對濕度而不是分壓,並提出以化學自由能理論為基礎之熱力學導證。最後,我們觀察水氣在厚度較厚聚亞醯胺膜於不同溫度下的擴散反應,而得到擴散係數項對溫度的關係,可以Arrhenius方程式描述,得到此擴散行為之活化能,為7.28kcal/mol。然而較高溫因為應力疏散行為較為顯著,而使得原本因為吸水而彎曲之試片往應力為零之平整試片變化而影響了整個量測值,若分析低溫的擴散行為,則活化能為5.54kcal/mol,其與文獻中之值較為相近。


    摘要 I Abstract II 目錄 IV 第一章 緒論 1 1-1.聚合物材料之產業應用範疇以及其與溶液交互作用議題之重要性 1 1-2.研究動機 2 1-2-1.Polyimide(PI)之應用層面 2 1-2-2.溶液在聚合物中扮演的角色 3 1-3.理論與文獻回顧 3 1-4.一般量測儀器方法概觀 8 第二章 試片準備與量測方法 10 2-1.試片準備 10 2-2.量測原理 11 2-2-1.試片受到應力之行為表現 11 2.2-2.水氣進入造成之應力行為 12 2-3.量測系統 12 2-4.重量量測 15 第三章 結果與討論 17 3.1 薄試片吸水行為之光學曲率量測 17 3.1-1薄試片在水氣影響下之擴散行為 17 3.1-2反覆水氣擴散測試 19 3.1-3溫溼度對試片吸水平衡值之影響 20 3.2重量量測 21 3.3曲率量測結果與重量量測結果之比較 21 3.3-1相對濕度之影響對單位重量PI曲率變化與重量變化之關係 21 3.3-2溫度之影響對單位重量PI曲率變化與重量變化之關係 22 3.4厚試片吸水行為之光學曲率量測 24 3.4-1PI膜厚度增加對擴散行為的影響 25 3.4-2 量測結果與曲線擬合 26 3.4-3 應力疏散之討論 28 第四章 結論 29 參考文獻與書目 31 圖 35 表 58

    [1] Turner Alfrey, Jr., E. F. Gurnee, and W. G. Lloyd, “Diffusion in Glassy Polymers”, J. Polym. Sci. (C), 12, 249 (1966).
    [2] T. K. Kwei, and H. M. Zupko, “Diffusion in Glassy Polymers. I”J. Polym. Sci. (A2), 7, 867 (1969).
    [3] N. L. Thomas, and A. H. Windle, “A Theory of Case II Diffusion”, Polymer, 23, 529 (1982).
    [4] Noreen Thomas, and A. H. Windle, “Transport of methanol in poly(methyl methacrylate)”, Polymer, 19, 255 (1978).
    [5] H. L. Frisch, T. T. Wang, and T. K. Kwei, “Diffusion in Glassy Polymers. II”J. Polym. Sci. (A2), 7, 879 (1969).
    [6] A. Peterlin, “Diffusion with Discontinuous Swelling. V. Type II Diffusion into Sheets and Speres”, J. Polym. Sci. : Polym. Phys. Edn. ,17, 1741 (1979).
    [7] G. Astarita, and G. C. Sarti, “A Class of Mathematical Models for Sorption of Swelling Solvents in Glassy Polymers”, Polym. Eng. Sci., 18, 388 (1978).
    [8] Giulio C. Sarti, “Solvent osmotic stresses and the prediction of Case II transport kinetics”, Polymer, 20, 827 (1979).
    [9] H. Han, J. Seo, M. Ree, S. M. Pyo, and C. C. Gryte, “Water Sorption and diffusion Behaviours in Thin Films of Photosensitive Polyimides”, Polymer, 39, 2963 (1998).
    [10] Julie P. Harmon, Sanboh Lee, and J. C. M. Li, “Methanol Transport in PMMA: The Effect of Mechanical Deformation”, J. Polym. Sci. (A), 25, 3215 (1987).
    [11] Peeyush Bhargava, Kathy C. Chuang, Kenway Chen, and Alan Zehnder, “Moisture Diffusion Properties of HFPE-II-52 Polyimide”, J. Appl. Polym. Sci., 102, 3471 (2006).
    [12] Kyriaki Manoli, Dimitris Goustouridis, Stavros Chatzandroulis, Ioannis Raptis, Evangelos S. Valamontes, and Merope Sanopoulou, “Vapor sorption in thin supported polymer films studied by white light interferometry”, Polymer, 47, 6117 (2006).
    [13] Li-Qiang Chu, Hai-Quan Mao, and Wolfgang Knoll, “In situ characterization of moisture sorption/desorption in thin polymer films using optical waveguide spectroscopy”, Polymer, 47, 7406 (2006).
    [14] Li-Hsin Chang, and Harland Tompkins, “Method for measuring diffusion of moisture in polyimide”, Appl. Phys. Lett, 59, 2278 (1991).
    [15] M. Giacomeli Penon, S. J. Picken, M. Wübbenhorst, G. de Vos, and J. van Turnhout, “Dielectric water sorption analysis”, Rev. Sci. Instrum., 77, 115107 (2006).
    [16] A. Jain, V. Gupta, and S. N. Basu, “A quantitative study of moisture adsorption in polyimide and its effect on the strength of the polyimid/silicon nitride interface”, Acta Materialia, 53, 3147 (2005).
    [17] Sevtap Vildiz, Yesim Hepuzer, Yusuf Yagci, and Önder Pekcan, “Swelling and Drying Kinetics of Polytetrahydrofuran and Polytetrahydrofuran-Poly (methyl methacrylate) Gels: A Photon Transmission Study”, J. Appl. Polym. Sci., 87, 632 (2003).
    [18] M. Erdogan, and Ö. Pekcan, “Temperature effect on gel swelling: a fast transient fluorescence study”, Polymer, 42, 4973 (2001).
    [19] H. Han, C. C. Gryte, and M. Ree, “Water Diffusion and Sorption in Films of High-performance Poly(4,4’-oxydiphenylene Pyromellitimide): Effects of Humidity, Imidization History and Film Thickness”, Polymer, 36, 1663 (1995).
    [20] M. Ree, H. Han, and C. C. Gryte, “Water Sorption in Thin Films of High-temperature Polyimides: The Effect of Imidization History”, High Perform. Polym. , 6, 321 (1994).
    [21] Http://www.cactus2000.de
    [22] Lowe, P. R. , and J. M. Ficke, “The Computation of Saturation Vapor Pressure”, Tech. Paper No. 4-74, Environmental Prediction Research Facility, Naval Postgraduate School, Monterey, CA, 27 pp. (1974).
    [23] Crank J, Park JS, Diffusion in Polymers, (London Academic Press, 1968), 259.
    [24] Robert T. DeHoff, Thermodynamics n Materials Science, (McGraw-Hill, Inc., 1993), 189.
    [25] David R. Gaskell, Introduction to the Thermodynamics of Materials, 4th Edition, (Taylor and Francis Books, Inc., 2003), 211&311.
    [26] P. W. Atkins, Elements of Physical Chemistry, 3rd Edition, (Oxford University Press, 1993), 114.
    [27] Jongchul Seo, Jongho Jeon, Yong Gun Shul, and Haksoo Han, “Water Sorption and Activation Energy in Polyimide Thin Films”, J. Polym. Sci. (B), 38, 2714 (2000).
    [28] J. S. Vrentas, and J. L. Duda, “Diffusion in Polymer-Solvent Systems. I. Reexamination of the Free-Volume Theory”, J. Polym. Sci. (Polym. Phys. Edn.), 15, 403 (1977).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE