簡易檢索 / 詳目顯示

研究生: 陳主倫
Chen, Chu-Lun
論文名稱: 透過砷摻雜誘發FeSn中的電荷密度波
Charge Density Wave in FeSn Induced by As-doping
指導教授: 鄭弘泰
Jeng, Horng-Tay
口試委員: 徐斌睿
Hsu, Pin-Jui
鄭澄懋
Cheng, Cheng-Maw
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 57
中文關鍵詞: 電荷密度波籠目晶格反鐵磁性密度泛函理論第一原理
外文關鍵詞: CDW, Kagome, AFM, DFT, First-Principle
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來研究者在籠目晶格(Kagome)反鐵磁性的FeGe材料中發現,當系統溫度下降至110K時,FeGe會發生電荷密度波(Charge Density Wave, CDW)的現象。密度泛函理論(Density Functional Theorem, DFT)計算指出,電荷密度波的形成會導致FeGe產生2×2×1的超週期性扭曲結構。FeSn與FeGe的晶格結構與磁性類似,卻未在實驗或是理論預測中發現電荷密度波的存在,這使得研究者們好奇是否能透過摻雜或加壓等方式誘發FeSn中潛在的電荷密度波。在本篇研究中,我們透過密度泛函理論計算FeSn摻雜磷、砷、銻等元素的結構能量差異、能帶結構、聲子譜,發現33%砷摻雜會促使FeSn產生電荷密度波。


    Researchers have recently discovered that the Kagome lattice antiferromagnetic material FeGe exhibits charge density wave (CDW) when the system's temperature drops to 110K. Density Functional Theorem (DFT) calculations indicate that the formation of CDW leads to a 2×2×1 superperiodic distorted structure in FeGe. FeSn shares a similar lattice structure and magnetism with FeGe, yet no CDW has been observed experimentally or predicted theoretically in FeSn. Despite the absence of CDW in FeSn, exploring ways to induce the potential CDW in FeSn, such as doping or applying strain, remains a fascinating research topic. In this study, we performed DFT to calculate the structural energy differences, band structures, and phonon spectra of FeSn doped with elements such as phosphorus (P), arsenic (As), and antimony (Sb). The results reveal that 33% arsenic doping promotes the formation of CDW in FeSn.

    Abstract (Chinese) i Abstract (English) ii Acknowledgments (Chinese) iii Contents iv List of Figures vi List of Tables viii 1 Introduction and Motivation 1 1.1 Charge Density Wave in Kagome FeGe 1 1.2 Doping FeSn with Arsenic (As) 3 2 Theories and Methods 4 2.1 Density Functional Theorem (DFT) 4 2.1.1 Hamiltonian in Solid System 4 2.1.2 Hohenberg-Kohn Theorem 5 2.1.3 Exchange-correlation Functional 7 2.1.4 LDA+U Method 8 2.2 Phonon Calculation Theory 9 2.2.1 Taylor Expansion for Energy 9 2.2.2 Dynamical Matrix 10 2.2.3 Finite Difference Method 11 2.3 Charge Density Wave (CDW) 12 2.3.1 Physical Picture of CDW 12 2.3.2 CDW Bandgap and Kohn Anomaly 13 2.3.3 Derivation of CDW Gap 14 2.3.4 Fermi Surface Nesting 15 2.4 Band Unfolding 16 2.5 Computational Details 17 3 Results and Discussion 19 3.1 Crystal Structure and Magnetism 19 3.1.1 Lattice Structure and Magnetic Moments for FeGe 19 3.1.2 Lattice Structure and Magnetic Moments for Fe3Sn2As 21 3.1.3 CDW Structure and Magnetic Moments for FeGe 23 3.1.4 CDW Structure and Magnetic Moments for Fe3Sn2As 25 3.1.5 DFT+U Structure and Magnetic Moments for FeGe 27 3.1.6 DFT+U Structure and Magnetic Moments for Fe3Sn2As 29 3.2 Convergence Test 31 3.2.1 KPOINTS Test for FeGe 32 3.2.2 KPOINTS Test for Fe3Sn2As 33 3.2.3 ENCUT Test for FeGe 34 3.2.4 ENCUT Test for Fe3Sn2As 35 3.3 Band Structures and Density of States 36 3.3.1 Band Structures for FeGe 37 3.3.2 Band Structures for Fe3Sn2As 41 3.4 Phonon Spectra 45 3.4.1 Phonon Spectra for FeGe 46 3.4.2 Phonon Spectra for Fe3Sn2As 47 4 Conclusion 48 Future Work 49 Reference 50 Appendix 56

    [1] Yin, Jia-Xin, Biao Lian, and M. Zahid Hasan. "Topological kagome magnets and superconductors." Nature 612.7941 (2022): 647-657.
    [2] Yin, Jia-Xin, et al. "Negative flat band magnetism in a spin–orbit-coupled correlated kagome magnet." Nature Physics 15.5 (2019): 443-448.
    [3] Teng, Xiaokun, et al. "Discovery of charge density wave in a kagome lattice antiferromagnet." Nature 609.7927 (2022): 490-495.
    [4] Teng, Xiaokun, et al. "Magnetism and charge density wave order in kagome FeGe." Nature physics 19.6 (2023): 814-822.
    [5] Wenzel, M., et al. "Intriguing low-temperature phase in the antiferromagnetic kagome metal FeGe." Physical Review Letters 132.26 (2024): 266505.
    [6] Han, Tian-Heng, et al. "Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet." Nature 492.7429 (2012): 406-410.
    [7] Meier, William R., et al. "Flat bands in the CoSn-type compounds." Physical Review B 102.7 (2020): 075148.
    [8] Yin, Yuxin, et al. "Theoretical investigation of charge density wave instability in CuS 2." Physical Review Materials 4.10 (2020): 104001.
    [9] Campetella, Marco, et al. "Electron-phonon driven charge density wave in CuTe." Physical Review B 108.2 (2023): 024304.
    [10] Liu, Fei-Hu, et al. "First-principles study of the Kohn anomaly in TaTe4." Applied Physics Letters 119.9 (2021). 
    [11] Duong, Dinh Loc, Marko Burghard, and J. Christian Schön. "Ab initio computation of the transition temperature of the charge density wave transition in TiS e 2." Physical Review B 92.24 (2015): 245131.
    [12] LaBollita, Harrison, and Antia S. Botana. "Tuning the Van Hove singularities in AV 3 Sb 5 (A= K, Rb, Cs) via pressure and doping." Physical Review B 104.20 (2021): 205129.
    [13] Jiang, Yu-Xiao, et al. "Unconventional chiral charge order in kagome superconductor KV3Sb5." Nature materials 20.10 (2021): 1353-1357.
    [14] Ortiz, Brenden R., et al. "New kagome prototype materials: discovery of KV 3 Sb 5, RbV 3 Sb 5, and CsV 3 Sb 5." Physical Review Materials 3.9 (2019): 094407.
    [15] Park, Changwon, and Young-Woo Son. "Condensation of preformed charge density waves in kagome metals." Nature Communications 14.1 (2023): 7309.
    [16] Wang, Yilin. "Enhanced spin-polarization via partial Ge-dimerization as the driving force of the charge density wave in FeGe." Physical Review Materials 7.10 (2023): 104006.
    [17] Shao, Sen, et al. "Intertwining of magnetism and charge ordering in kagome FeGe." ACS nano 17.11 (2023): 10164-10171.
    [18] Miao, H., Zhang, T.T., Li, H.X. et al. Signature of spin-phonon coupling driven charge density wave in a kagome magnet. Nat Commun 14, 6183 (2023).
    [19] Zhang, Binhua, et al. "Electronic and magnetic origins of unconventional charge density wave in kagome FeGe." Physical Review B 110.12 (2024): 125139. 
    [20] Huang, Jiale, et al. "FeGe 1− x Sb x: A series of kagome metals with noncollinear antiferromagnetism." Physical Review B 108.18 (2023): 184431.
    [21] Mills, Allison M., and Arthur Mar. "Structures of the ternary iron germanium pnictides FeGe1− xPnx (Pn= P, As, Sb)." Journal of alloys and compounds 298.1-2 (2000): 82-92.
    [22] Gibson, Quinn D., et al. "Magnetic, electronic, and thermal properties of buckled kagome Fe 3 Ge 2 Sb." Physical Review B 108.3 (2023): 035102.
    [23] Kresse, Georg, and Jürgen Furthmüller. "Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set." Physical review B 54.16 (1996): 11169.
    [24] Blöchl, Peter E. "Projector augmented-wave method." Physical review B 50.24 (1994): 17953.
    [25] Hohenberg, Pierre, and Walter Kohn. "Inhomogeneous electron gas." Physical review 136.3B (1964): B864.
    [26] Kohn, Walter, and Lu Jeu Sham. "Self-consistent equations including exchange and correlation effects." Physical review 140.4A (1965): A1133.
    [27] Perdew, John P., et al. "Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation." Physical review B 46.11 (1992): 6671.
    [28] Becke, Axel D. "Density-functional exchange-energy approximation with correct asymptotic behavior." Physical review A 38.6 (1988): 3098.
    [29] Langreth, David C., and M. J. Mehl. "Beyond the local-density approximation in calculations of ground-state electronic properties." Physical Review B 28.4 (1983): 1809. 
    [30] Anisimov, Vladimir I., Jan Zaanen, and Ole K. Andersen. "Band theory and Mott insulators: Hubbard U instead of Stoner I." Physical Review B 44.3 (1991): 943.
    [31] Kohn, W. "Image of the Fermi Surface in the Vibration Spectrum of a Metal." Physical Review Letters 2.9 (1959): 393.
    [32] Peierls, Rudolf Ernst. Quantum theory of solids. Clarendon Press, 1996.
    [33] Togo, Atsushi, et al. "Implementation strategies in phonopy and phono3py." Journal of Physics: Condensed Matter 35.35 (2023): 353001.
    [34] Togo, Atsushi. "First-principles phonon calculations with phonopy and phono3py." Journal of the Physical Society of Japan 92.1 (2023): 012001.
    [35] Momma, Koichi, and Fujio Izumi. "VESTA: a three-dimensional visualization system for electronic and structural analysis." Journal of Applied crystallography 41.3 (2008): 653-658.
    [36] Momma, Koichi, and Fujio Izumi. "VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data." Journal of applied crystallography 44.6 (2011): 1272-1276.
    [37] Jain, Anubhav, et al. "Commentary: The Materials Project: A materials genome approach to accelerating materials innovation." APL materials 1.1 (2013).
    [38] Perdew, John P., Kieron Burke, and Matthias Ernzerhof. "Generalized gradient approximation made simple." Physical review letters 77.18 (1996): 3865.
    [39] Liechtenstein, A. I., Vladimir I. Anisimov, and Jan Zaanen. "Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators." Physical Review B 52.8 (1995): R5467. 
    [40] Krannich, S., et al. "Magnetic moments induce strong phonon renormalization in FeSi." Nature Communications 6.1 (2015): 8961.
    [41] Braden, M., et al. "Spin-Phonon Coupling in CuGeO 3." Physical review letters 80.16 (1998): 3634.
    [42] Gros, Claudius, and Ralph Werner. "Dynamics of the Peierls-active phonon modes in CuGeO 3." Physical Review B 58.22 (1998): R14677.
    [43] Zhang, Huimin, et al. "Visualizing symmetry-breaking electronic orders in epitaxial Kagome magnet FeSn films." Nature Communications 14.1 (2023): 6167.
    [44] Zheng, Q., Vasp band unfolding. https://github.com/QijingZheng/ VaspBandUnfolding (2018).
    [45] Popescu, Voicu, and Alex Zunger. "Extracting E versus k ⃗ effective band structure from supercell calculations on alloys and impurities." Physical Review B—Condensed Matter and Materials Physics 85.8 (2012): 085201.
    [46] Fowler, Michael. "Electrons in one dimension: the peierls transition." Introduction: Looking for Superconductors and Finding Insulators (2007): 20.
    [47] Johannes, M. D., and I. I. Mazin. "Fermi surface nesting and the origin of charge density waves in metals." Physical Review B—Condensed Matter and Materials Physics 77.16 (2008): 165135.
    [48] Dugdale, Stephen B. "Life on the edge: a beginner’s guide to the Fermi surface." Physica Scripta 91.5 (2016): 053009.
    [49] Lindhard, Jens. "On the properties of a gas of charged particles." Kgl. Danske Videnskab. Selskab Mat.-Fys. Medd. 28 (1954).
    [50] Chen, Ziyuan, et al. "Discovery of a long-ranged charge order with 1/4 Ge1-dimerization in an antiferromagnetic Kagome metal." Nature Communications 15.1 (2024): 6262.
    [51] Zhou, Hanjing, et al. "Magnetic interactions and possible structural distortion in kagome FeGe from first-principles calculations and symmetry analysis." Physical Review B 108.3 (2023): 035138.
    [52] Ye, Linda, et al. "Massive Dirac fermions in a ferromagnetic kagome metal." Nature 555.7698 (2018): 638-642.
    [53] Liu, D. F., et al. "Magnetic Weyl semimetal phase in a Kagomé crystal." Science 365.6459 (2019): 1282-1285.
    [54] Li, Man, et al. "Dirac cone, flat band and saddle point in kagome magnet YMn6Sn6." Nature communications 12.1 (2021): 3129.
    [55] Ghimire, Nirmal J., et al. "Competing magnetic phases and fluctuation-driven scalar spin chirality in the kagome metal YMn6Sn6." Science Advances 6.51 (2020): eabe2680.
    [56] Zhao, He, et al. "Cascade of correlated electron states in the kagome superconductor CsV3Sb5." Nature 599.7884 (2021): 216-221.
    [57] Hu, Yong, et al. "Topological surface states and flat bands in the kagome superconductor CsV3Sb5." Science Bulletin 67.5 (2022): 495-500.
    [58] Liechtenstein, A. I., Vladimir I. Anisimov, and Jan Zaanen. "Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators." Physical Review B 52.8 (1995): R5467.

    QR CODE