研究生: |
葉宗浩 Ye, Zong-Hao |
---|---|
論文名稱: |
能帶工程和氮分佈應用在電荷陷阱式快閃記憶體元件 Applications of Band Engineering and Nitrogen Profiles in Charge-Trapping Flash Memory Devices |
指導教授: |
張廖貴術
Chang-Liao, Kuei-Shu |
口試委員: |
趙天生
劉致為 蔡銘進 謝嘉民 |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 128 |
中文關鍵詞: | 儲存層 、能帶工程 、快閃記憶體 、模擬 、氮化 、堆疊 |
外文關鍵詞: | charge-trapping, band engineering, flash memory, simulation, nitridation, stacked |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著個人相機,筆記型電腦和智慧型手機需求的增加,非揮發性記憶體(NVM)技術發展的非常迅速。對非揮發性記憶體元件而言,快速寫入和抹除的特性、優秀的電荷保持力和耐久力是必須的。為了達到這個目標,許多的技術被應用於電荷儲存式快閃記憶體元件上。
在本篇論文中,一開始是回顧快閃記憶體的文獻。 根據文獻的記載,藉由把高介電係數材料應用到電荷儲存式快閃記憶體元件上來改善其寫入和抹除的速度。然而由於高介電係數材料具有較低的結晶溫度,這個特性將導致應用高介電係數材料於電荷儲存式快閃記憶體元件上時會有電荷保持力的問題。為了解決這個問題,氮化矽和高介電係數材料組成的堆疊結構被提出。 實驗結果顯示藉由氮化矽和氧化鉿堆疊形成的儲存層結構能夠改善電荷儲存式快閃記憶體元件的抹除速度和電荷保持力。抹除速度的改善是由於氮化矽的價電帶和矽的價電帶之間的能量差距較小。電荷保持力的改善則是因為對於儲存在氧化鉿的電子要逃脫到氮化矽需要克服一個較大的能帶障礙。此外,電荷儲存式快閃記憶體元件的寫入速度和電荷保持力能夠利用氮化矽/氧化鋁/氧化鉿堆疊結構當作儲存層來進一步地改善。元件的寫入速度被改善是因為許多的注入電荷會被儲存在氮化矽和氧化鋁的介面。元件的電荷保持力被提升則是由於氧化鋁提供了一個較高的能障給從氧化鉿逃脫的電子。
另一方面,為了改善電荷儲存式快閃記憶體的特性,將能帶工程應用於阻擋層是必須的。在這篇論文中各種具有不同能帶結構的堆疊式阻擋層被研究。實驗結果顯示具有高品質二氧化矽(SL)和氧化鋁堆疊形成之阻擋層的元件會有優秀的電荷保持力,而且這個改善並不會犧牲元件的寫入和抹除速度。除此之外,電荷儲存式快閃記憶體元件的寫入、抹除和電荷保持力特性可以藉由氧化鋁/氧化鉿鋁/氧化鋁堆疊形成具有高-低-高(HLH)三層能障結構的阻擋層進一步地提升。並且藉由模擬金屬-絕緣體-金屬(MIM)元件的閘極電流密度來研究具有三層能障結構阻擋層的厚度效應。模擬結果顯示在整體等效氧化層厚度不變的前提下,對於具有HLH能障結構的三層阻擋層,其第二層的厚度薄一點是比較好的設計,因為可以導致較小的閘極電流密度。
最後,在電荷儲存式快閃記憶體元件的閘極介電層中具有不同地氮分佈,其元件的操作特性被研究。對於利用電漿離子佈植(PIII)的方式形成的氮分佈,其氮濃度的峰值會出現在兩個不同的位置。其中比較淺的峰值位於元件的阻擋層,而比較深的峰值則位於元件的儲存層。氮元素具有能夠鈍化界面的缺陷以及增加薄膜中深層能階缺陷的濃度的特性,而這些性質和其在閘極介電層中的位置有關。實驗結果顯示氮元素在閘極介電層中的位置是比其濃度來得重要。另外,我們也總結出對於利用電漿離子佈植的方式將氮摻入電荷儲存式快閃記憶體元件的閘極介電層中,在儲存層靠近穿隧層的地方具有較高的氮濃度並且在阻擋層中具有一個低於18% 的氮濃度是一個最理想的結果。
As the demands for personal cameras, laptops, and smart-phones increase, development of nonvolatile memory (NVM) is rapidly expanding. NVM devices with faster programming/erasing (P/E), excellent retention and endurance characteristics are required. To achieve this goal, many methods have been applied to Charge-trapping (CT) flash memory devices.
This dissertation firstly reviews the literature on CT-flash memory. According to the literature, P/E speeds can be improved by applying high-k materials to the charge-trapping layer of CT-flash memory devices. However, its poor retention that arises from the low crystalline temperature of high-k materials is an issue. To overcome this issue, a stacked structure of Si3N4 and high-k materials is proposed herein. Experimental results indicate that a stacked Si3N4/HfO2 charge-trapping layer can improve the erasing and retention operations of CT-flash devices. These improvements are attributed to the smaller valence band offset of Si3N4 to Si and the higher barrier for electron detrapping from HfO2 to Si3N4. The programming and retention characteristics of CT-flash memory devices can be further enhanced by a Si3N4/Al2O3/HfO2 as the CT layer to increase the number of injected charges that are trapped at the Si3N4/Al2O3 interface, and to provide a high barrier to electron detrapping from HfO2.
Band engineering must be performed on the blocking layer to improve the performance of CT-flash memory. In this dissertation, various stacked blocking layers with various band structures are studied. The results indicate excellent data retention of devices with a sealing layer (SL) / Al2O3 blocking layer without loss of P/E speeds. The programming, erasing, and retention characteristics of CT-flash devices can be further enhanced by using the high/low/high (HLH) triple barrier structure with Al2O3/HfAlO/Al2O3 blocking layers. The effects of thickness of the blocking oxides in a multilayer barrier structure are studied by simulating the gate current density in a metal/insulator/metal (MIM) device. All MIM structures with triple insulator have the same electrical oxide thickness (EOT) and different thicknesses for each layer. Simulation results show a thin second layer for triple blocking layer with an HLH barrier structure is preferred because its gate current density is smaller.
Finally, the operating characteristics of CT-flash devices with different nitrogen profiles in gate stack are studied. Two peaks in the nitrogen depth profile are formed by plasma immersion ion implantation (PIII) nitridation treatment. A shallow peak is obtained in the blocking layer and a deep peak is obtained in the CT layer. Nitrogen can passivate defects in the interface and increase the number of deep trapping sites in the bulk. Therefore, the properties of nitrogen are determined by their locations in the gate stack. The results indicate that the nitrogen profile in the gate stack is more important than the nitrogen concentration therein. A nitrogen profile that has a deep peak with a high concentration and shallow one with a suitable concentration (< 18 %) is optimal for PIII nitridation treatment.
[1] Srikant Jayanti, Xiangyu Yang, Rahul Suri, and Veena Misra, “Ultimate Scalability of TaN Metal Floating with Incorporation of High-k Blocking Dielectrics for Flash Memory Applications,” in IEDM Tech. Dig., pp. 106-109, 2010.
[2] The International Technology Roadmap for Semiconductors (ITRS), 2012.
[3] C.H. Lai, Albert Chin, H. L. Kao, K. M. Chen, M. Hong, J. Kwo, and C. C. Chi, “Very Low Voltage SiO2/HfON/HfAlO/TaN Memory with Fast Speed and Good Retention,” in VLSI Symp. Tech. Dig., pp. 44-45, 2006.
[4] C.Y. Tsai, T. H. Lee, Alber Chin, Hong Wang, C. H. Cheng, and F. S. Yeh, “Highly-Scaled 3.6-nm ENT Trapping Layer MONOS Device with Good Retention and Endurance,” in IEDM Tech. Dig., pp. 110-113, 2010.
[5] Xuguang Wang, Jun Liu, Weiping Bai, and Dim-Lee Kwong, “A Novel MONOS-type Nonvolatile Memory Using High-k Dielectrics for Improved Data Retention and Programming Speed,” IEEE Trans. Electron Devices, vol. 51, no. 4, pp. 597-602, April 2004.
[6] Chang Hyum Lee, Kyung In Choi, Myoung Kwan Cho, Yun Heub Song, Kyu Charn Park, and Kinam Kim, “A Novel SONOS Structure of SiO2/SiN/Al2O3 with TaN Metal Gate for Multi-giga Bit Flash Memories,” in IEDM Tech. Dig., pp. 613-616, 2003.
[7] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash Memory Cells — an Overview,” Proceedings of the IEEE, vol. 85, no. 8, pp. 1248-1271, August 1997.
[8] M. A. A. Sanvido, F.R. Chu, A. Kulkarni, and R. Selinger; “NAND Flash Memory and its Role in Storage Architectures,” Proceedings of the IEEE, vol.96, no.11, pp. 1864-1874, November 2008.
[9] Kinam Kim and Gitae Jeong, “Memory Technologies for Sub-40nm Node,” Tech. Digest 2007 International Electron Devices Meeting (IEDM), pp. 27-30, 2007.
[10] Tal A: Two Flash Technologies Compared: NOR vs. NAND. 91-SR-012-04-8 L REV.1.0. M-Systems Flash Disk Pioneers: Newark; 2002.
[11] S. Mukherjee, T. Chang, R. Pang, M. Knecht, D. Hu, “A Single Transistor EPROM Cell And Its Implementation in A 512 K CMOS EPROM,” in IEDM Tech. Dig., pp.616-619, 1985.
[12] V. N. Kynett et al., “An In-system Reprogrammable 256K CMOS Flash Memory,” in ISSCC Conf. Proc., pp.132, 1988.
[13] R.Bez, P. Cappelletti, “Flash Memory and Beyond,” in Symp. VLSI-TSA Tech. Dig., pp.84-87, 2005.
[14] Y. S. Shin, “Non-volatile Memory Technologies for Beyond 2010,” in Symp. VLSI Circuit Dig. Tech., pp.156-159, 2005.
[15]Front-end processing, in: International Technology Roadmap for Semiconductors (ITRS), 2001, pp.41.
[16] M. L. French, H. Sathianathan, M. H. White, “A SONOS Nonvolatile Memory Cell for Semiconductor Disk Application,” IEEE Nonvolatile Memory Technology Review, pp.70-73, June 1993.
[17] K. Kim, “Technology for Sub-50nm DRAM and NAND Flash Manufacturing,” Tech. Digest 2005 International Electron Devices Meeting (IEDM), pp. 333-336, 2005.
[18] M.L. French, C. Y. Chen, H. Sathianathan, M. H. White, “Design and Scaling of A SONOS Multidielectric Device for Nonvolatile Memory Applications,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, vol. 17, no.3, pp. 390-397, September 1994.
[19] Sanghun Jeon, Jeong Hee Han, Junghoon Lee, Sangmoo Choi, Hyunsang Hwang, and Chungwoo Kim, “Impact of Metal Work Function on Memory Properties of Charge-Trap Flash Memory Devices Using Fowler–Nordheim P/E Mode,” IEEE Electron Device Letters, vol. 27, no. 6, pp.486-488, June 2006.
[20] Ping-Hung Tsai, Kuei-Shu Chang-Liao, Chu-Yung Liu, Tien-Ko Wang, P. J. Tzeng, C. H. Lin, L. S. Lee, and M.-J. Tsai, “Novel SONOS-type Nonvolatile Memory Device with Optimal Al Doping in HfAlO Charge-Trapping Layer,” IEEE Electron Device Letters, vol. 29, no. 3, pp.265-268, March 2008.
[21] Ping-Hung Tsai, Kuei-Shu Chang-Liao, Dong-Wei Yang, Yuan-Bin Chung, Tien-Ko Wang, P. J. Tzeng, H. Lin, L. S. Lee, M. J. Tsai, and Albert Chin, “Crucial Integration of High Work-Function Metal Gate and High-K Blocking Oxide on Charge-Trapping Type Flash Memory Device,” Applied Physics Letters, vol. 93, no. 25, 252902-1-3 , December 2008.
[22] Chang-Hyun Lee, Sung-Hoi Hur, You-Cheol Shin, Jeong-Hyuk Choi, Dong-Gun Park, and Kinam Kim, “Charge-Trapping Device Structure of SiO2/SiN/high-k dielectric Al2O3 for High-Density Flash Memory,” Applied Physics Letters, vol. 86, no. 15, pp. 152908-152903, April 2005.
[23] Zongliang Huo, JunKyu Yang, SeungHyun Lim, SeungJae Baik, Juyul Lee, JeongHee Han, In-Seok Yeo, U-In Chung, Joo Tae Moon, Byung-II Ryu, “Band Engineered Charge Trap Layer for Highly Reliable MLC Flash Memory,” VLSI Symp. Tech. Dig., 2007, pp.138-139.
[24] Hee-Wook You and Won-Ju Cho, “Charge Trapping Properties of the HfO2 Layer with Various Thicknesses for Charge Trap Flash Memory Applications,” Applied Physics Letters, vol. 96, no. 9, pp. 093506-1-3, March 2010.
[25] Hyo June Kim, Seung Yong Cha, Doo Jin Choi, “Memory Characteristics of Al2O3/La2O3/Al2O3 Multi-Layer Films With Various Blocking and Tunnel Oxide Thicknesses,” Materials Science in Semiconductor Processing, vol. 13, no. 1, pp. 9–12, February 2010.
[26] Chun Zhao, Ce Zhou Zhao, Stephen Taylor, and Paul R. Chalker, “Review on Non-Volatile Memory with High-k Dielectrics: Flash for Generation Beyond 32 nm,” Materials, vol. 7, no. 7, pp. 5117-5145, July 2014.
[27] J. Buckley, M. Bocquet, G. Molas, M. Gely, P. Brianceau, N. Rochat, E.Martinez, F.Martin, H. Grampeix, JP. Colonna, A.Toffoli, V. Vidal, C. Leroux, G. Ghibaudo, G. Pananakakis, C. Bongiorno, D. Corso, S. Lombardo, B. DeSalvo, S. Deleonibus, “In-depth Investigation of Hf-Based High-K Dielectrics as Storage Layer of Charge-Trap NVMs,” Tech. Digest 2006 International Electron Devices Meeting (IEDM), pp.1-4.
[28] G.D. Wilk, R. M. Wallace, J. M. Anthony, “High-K Gate Dielectrics: Current Status and Material Properties Considerations,” Journal of Applied Physic, vol. 89, no. 10, pp. 5243-5275, May 2001.
[29] Moon Sig Joo, Byung Jin Cho, Chia Ching Yeo, Daniel Siu Hung Chan, Sung Jin Whoang, Shajan Mathew, Lakshmi Kanta Bera, N. Balasubramanian, and Dim-Lee Kwong, “Formation of Hafnium–Aluminum–Oxide Gate Dielectric Using Single Cocktail Liquid Source in MOCVD Process,” IEEE Transactions on Electron Devices, vol. 50, no. 10, pp. 2088-2094, October 2003.
[30] Y. N. Tan, Chim, W.-K., Byung Jin Cho, Wee-Kiong Choi, ”Over-Erase Phenomenon in SONOS-Type Flash Memory and Its Minimization Using A Hafnium Oxide Charge Storage Layer,” IEEE Transactions on Electron Device, vol. 51, no. 7, pp.1143-1147, July 2004.
[31] Moon Sig Joo, Byung Jin Cho, Chia Ching Yeo, Nan Wu, Hongyu Yu, Chunxiang Zhu, Ming Fu Li, Dim-Lee Kwong, and Narayanan Balasubramanian, ”Dependence of Chemical Composition Ratio on Electrical Properties of HfO2-Al2O3 Gate Dielectric,” Japanese Journal of Applied Physics., vol. 42, Part 2, no. 3A, pp. L220-L222, March 2003.
[32] Ping-Hung Tsai, “Application of High-k Material, Stacked Structure and High Work-Function Metal Gate on Charge Trapping Type Flash Memory Devices,” Ph.D. dissertation, Dept. Eng. and Sys. Science, NTHU Univ., Hsinchu, Taiwan, 2009.
[33] Ping-Hung Tsai, Kuei-Shu Chang-Liao, Te-Chiang Liu, Tien-Ko Wang, Pei-Jer Tzeng, Cha-Hsin Lin, L. S. Lee, and Ming-Jinn Tsai, “Charge-Trapping-Type Flash Memory Device with Stacked High-K Charge-Trapping Layer,” IEEE Electron Device Letters, vol. 30, no. 7, pp.775-777, June 2009.
[34] S. Choi, M. Cho, H. Hwang, “Improved Metal–Oxide–Nitride–Oxide–Silicon-Type Flash Device with High- K Dielectrics for Blocking Layer,” J. Appl. Phys., vol. 94, no.8, pp. 5408-5410, October 2003.
[35] Wei He, Jing Pu, Chan, D., Byung Jin Cho, “Performance Improvement in Charge-Trap Flash Memory Using Lanthanum-Based High-K Blocking Oxide,” IEEE Trans. Electron Devices, vol. 56, no. 11, pp. 2746-2751, September 2009.
[36] Yan Ny Tan, Chim, W.K., Wee Kiong Choi, Moon Sig Joo, Byung Jin Cho, “Hafnium Aluminum Oxide as Charge Storage and Blocking-Oxide Layers in SONOS-Type Nonvolatile Memory for High-Speed Operation,” IEEE Trans. Electron Devices, vol. 53, no. 4, pp.654-662, April 2006.
[37] A. Rothschild, L. Breuil , G. Van den bosch, O. Richard, T. Conard, A. Franquet, A. Cacciato, 1. Debusschere, M. Jurczak, J. Van Houdt, J. A. Kittl,”02 Post Deposition Anneal of Al203 Blocking Dielectric for Higher Performance and Reliability of TANOS Flash Memory,” Solid State Device Research Conference, pp. 272 - 275, 2009.
[38] M. Bocquet, G. Molas , L. Perniola, X. Garros, J. Buckley, M. Gely, J.P. Colonna, H. Grampeix, F. Martin, V. Vidal, A. Toffoli, S. Deleonibus, G. Ghibaudo, G. Pananakakis, B. De Salvo, “Impact of A HTO/Al2O3 Bi-layer Blocking Oxide in Nitride-trap Non-Volatile Memories,” Solid-State Electronics, vol. 53, no. 7, pp. 786-791, July 2009.
[39] Lu Zhang, Wei He, Daniel S. H. Chan, Byung Jin Cho, “Multi-layer High-K Interpoly Dielectric for Floating Gate Flash Memory Devices,” Solid-State Electronics, vol. 52, no. 4, pp.564–570, April 2008.
[40]Chang Seok Kang, Hag-Ju Cho, Rino Choi, Young-Hee Kim, Chang Yong Kang, Se Jong Rhee, Changhwan Choi, Mohammad Shahariar Akbar, and Jack C. Lee, “The Electrical and Material Characterization of Hafnium Oxynitride Gate Dielectrics with TaN-Gate Electrode,” IEEE Transactions Electron Devices, vol. 51, no. 2, pp. 220-227, February 2004.
[41] Tsunehiro Ino, Yuuichi Kamimuta, Masamichi Suzuki, Masato Koyama, and Akira Nishiyama, “Dielectric Constant Behavior of Hf–O–N System,” Jpn. J. Appl. Phys., vol. 45, Part 1, no. 4B, pp. 2908-2913, April 2006.
[42] H. J. Yang, C. F. Cheng, W. B. Chen, S. H. Lin, F. S. Yeh, Sean P. McAlister, and Albert Chin, ”Comparison of MONOS Memory Device Integrity When Using Hf1−x−yNxOy Trapping Layers With Different N Compositions,” IEEE Transactions on Electron Devices, vol. 55, no. 6, pp. 1417-1423, June 2008.
[43] Tackhwi Lee, Sanjay K. Banerjee, “Device Characteristics of HfON Charge-trap Layer Nonvolatile Memory,” J. Vac. Sci. Technol. B, vol. 28, no. 5, pp. 1005-1010, September 2010.
[44] C.R. Hsieh, C.H. Lai, B.C. Lin, J.C. Lou, J.K. Lin, Y.L. Lai, and H.L. Lai, “Novel Oxynitride Layer Applied to Flash Memory Using HfO2 as Charge Trapping Layer,” IEEE Electron Device and Solid-State Circuits, pp. 629-632, December 2007.
[45]C. J. Huang, C. H. Yang, C. Y. Hsueh, J. H. Lee, Y. T. Chang, and S. C. Lee, “Performance Enhancement of Silicon Nanowire Memory by Tunnel Oxynitride, Stacked Charge Trap Layer, and Mechanical Strain,” IEEE Electron Device Letters, vol. 33, no. 1, pp. 20-22, January 2012.
[46]Chin-Lung Cheng, Kuei-Shu Chang-Liao, Ching-Hung Huang, Tien-Ko Wang, “Current-Conduction and Charge Trapping Properties Due to Bulk Nitrogen in Hfoxny Gate Dielectric of Metal-Oxide-Semiconductor Devices,” Applied Physics Letters, vol. 86, no. 21, pp. 212902 - 212902-3, May 2005.
[47] F. Le Coeur, J. Pelletier, Y. Arnal, A. Lacoste, “Ion Implantation by Plasma Immersion: Interest, Limitations and Perspectives,” Surface and Coatings Technology, vol. 125, issues 1–3, pp. 71–78. March 2000.
[48] S. Mandl, J.W. Gerlach, D. Manova, B. Rauschenbach, M. Schubert, and W. Assmann. (2006). Maier-Leibnitz-Laboratorium der Universität München und der Technischen Universität München [Online]. Available: http://www.bl.physik.uni-muenchen.de/bl_rep/jb2006/p069.pdf
[49] M. H. White, D. A. Adams and J. Bu, "On the Go with SONOS," IEEE Circuits and Devices Magazine, vol. 16, no. 4, pp. 22-31, July 2000.
[50]H. Bachhofer, H. Reisinger, E. Bertagnolli, and H. von Philipsborn, "Transient Conduction in Multidielectric Silicon–Oxide–Nitride–Oxide Semiconductor Structures," Journal of Applied Physics (JAP), vol. 89, no. 5, pp. 2791-2800, March 2001.
[51] Y. Wang and M. H. White, "An Analytical Retention Model for SONOS Nonvolatile Memory Devices in the Excess Electron State," Solid-State Electronics, vol. 49, no. 1, pp. 97-107, January 2005.
[52] Hanmant P. Belgal, Nick Righos, Ivan Kalastirsky, Jeff I. Peterson, Robert Shiner, and Neal Mielke, “A New Reliability Model for Post-Cycling Charge Retention of Flash Memories,” in Proc. IRPS, pp. 7–20, 2002.
[53] Y. Kumagai, A. Teramoto, S. Sugawa, T. Suwa, and T. Ohmi, “Statistical Evaluation for Anomalous SILC of Tunnel Oxide Using Integrated Array TEG,” in Proc. IEEE Int. Reliab. Phys. Symp., pp. 219–224, April–May 2008.
[54] Taehoon Kim, Karthik Sarpatwari, Sateesh Koka, and Hongmei Wang, “Comprehensive Understanding on the Role of Tunnel Oxide Top Nitridation for the Reliability of Nanoscale Flash Memory,” IEEE Electron Device Letters, vol. 34, no. 3, pp. 396-398, March 2013.
[55] M. Bocquet, E. Vianello, G. Molas, L. Perniola, H. Grampeix, F. Martin, J. P. Colonna, A. M. Papon, P. Brianceau, M. Gély, B. De Salvo, G. Pananakakis, and G. Ghibaudo, ”An In-depth Investigation of Physical Mechanisms Governing SANOS Memories Characteristics,” IEEE International Memory Workshop, pp. 1-4, May 2009.
[56] Joo Hyung You, Hyun Woo Kim, Dong Hun Kim, Tae Whan Kim, and Keun Woo Lee, “Effect of the Trap Density and Distribution of the Silicon Nitride Layer on the Retention Characteristics of Charge Trap Flash Memory Devices,” IEEE Simulation of Semiconductor Processes and Devices (SISPAD), pp.199-202, September 2011.
[57] A. Paul, C. Sridhar, and S. Mahapatra, “Comprehensive Simulation of Program, Erase and Retention in Charge Trapping Flash Memories,” in IEDM Tech. Dig., 2006, pp. 393–396.
[58] S. S. Chung, S. T. Liaw, C. M. Yih, Z. H. Ho, C. J. Lin, D. S. Kuo, and M. S. Liang, “N-channel versus P-channel Flash EEPROM-which One Has Better Reliabilities,”, in Proc. IEEE International Reliability Physics Symposium, (IRPS), pp. 67-72, May 2001.
[59] Albert Fayrushin, Chang-Hyun Lee, Youngwoo Park, Jeong-Hyuk Choi, and Chilhee Chung, “Unified Endurance Degradation Model of Floating Gate NAND Flash Memory,” IEEE Transactions on Electron Devices, vol. 60, no. 6, pp. 2031-2037, June 2013.
[60] Franck Nallet, “Sentaurus TCAD Introduction,” Synopsys, Paris, France, September 15, 2014. [Online]. Available: https://indico.in2p3.fr/event/9786/contribution/5/material/slides/0.pdf
[61] Sentaurus DeviceTM User Guide, Version F-2011.09, Avant! Corporation, September 2011.
[62] Jiankang Bu and White, M.H., “Retention Reliability Enhanced SONOS NVSM with Scaled Programming Voltage,” IEEE Aerospace Conference paper, vol. 5, pp. 5-2383 5-2390, 2002.
[63] T. Melde, M. F. Beug, L. Bach, S. Riedel, N. Chan, C. Ludwig, and T. Mikolajick, “Accurate program simulation of TANOS charge trapping devices,” in Proc. 9th NVMTS, November 2008, pp. 1–5.
[64] Pei-Ying Du, “Trapped Charge Characterization of SONOS-type Devices Using a Novel Gate-Sensing and Channel-Sensing (GSCS) Method and Pulse-IV Technique,” Ph.D. dissertation, Dept. Electronics Engineering and Institute of Electronics, NCTU Univ., Hsinchu, Taiwan, 2009.
[65] Yoocheol Shin, Jungdal Choi, Changseok Kang, Changhyun Lee, Ki-Tae Park, Jang-Sik Lee, Jongsun Sel, Viena Kim, Byeongin Choi, Jaesung Sim, Dongchan Kim, Hag-ju Cho, and Kinam Kim, “A Novel NAND-type MONOS Memory Using 63nm Process Technology for Multi-Gigabit Flash EEPROMs,” in IEDM Tech. Dig., 2005, pp. 327–330.
[66] Hang-Ting Lue, Szu-Yu Wang, Erh-Kun Lai, Yen-Hao Shih, Sheng-Chih Lai, Ling-Wu Yang, Kuang-Chao Chen, Joseph Ku, Kuang-Yeu Hsieh, Rich Liu, and Chih-Yuan Lu, “BE-SONOS: A Bandgap Engineered SONOS with Excellent Performance And Reliability,” in IEDM Tech. Dig., 2005, pp. 547–550.
[67] T. Sugizaki, M. Kohayashi, M. Ishidao, H. Minakata, M. Yamaguchi, Y. Tamura, Y. Sugiyama, T. Nakanishi, and H. Tanaka, “Novel Multi-Bit SONOS Type Flash Memory Using a High-K Charge Trapping Layer,” Tech. Dig. Symp. VLSI Tech., 2003, pp. 27-28.
[68] Yan Ny Tan, Wai Kin Chim, Wee Kiong Choi, Moon Sig Joo, Tsu Hau Ng, and Byung Jin Cho, “High-k HfAlO charge trapping layer in SONOS-type nonvolatile memory device for high speed operation,” in IEDM Tech. Dig., 2004, pp. 889–892.
[69] Y.Q. Wang, P.K. Singh, W.J. Yoo, Y.C. Yeo, G. Samudra, Albert Chin, W.S. Hwang, J.H. Chen, S.J. Wang, and D.-L. Kwong, “Long Retention and Low Voltage Operation Using IrO/sub2/HfAlO/HfSiO/HfalO gate Stack for Memory Application,” in IEDM Tech. Dig., 2005, pp. 162–165.
[70] Y. N. Tan, W. K. Chim, W. K. Choi, M. S. Joo, T. H. Ng, and B. J. Cho, “High-k HfAlO Charge Trapping Layer in SONOS-type Nonvolatile Memory Device for High Speed Operation,” in IEDM. Tech. Dig., 2004, pp. 889–892.
[71] X.Wang and D.-L. Kwong, “A novel high-k SONOS memory using TaN/Al2O3/Ta2O5/HfO2/Si structure for fast speed and long retention operation,” IEEE Trans. Electron Devices, vol. 53, no. 1, pp. 78–82, January 2006.
[72] S. Maikap, P. J. Tzeng, L. S. Lee, H. Y. Lee, C. C. Wang, P. H. Tsai, K. S. Chang-Liao, W.-J. Chen, K. C. Liu, P. R. Jeng, and M.-J. Tsai, “High-k Hf-based charge trapping layer with A12O3 blocking oxide for high-density flash memory,” in VLSI Technol., Syst., Appl., 2006, pp. 1–2.
[73] C. Y. Tsai, T. H. Lee, and A. Chin, “Arsenic-implanted HfON chargetrapping flash memory with large memory window and good retention,” IEEE Electron Device Lett., vol. 32, no. 3, pp. 381–383, March 2011.
[74] C. H. Lai, A. Chin, K. C. Chiang, W. J. Yoo, C. F. Cheng, S. P. McAlister, C. C. Chi, and P. Wu, “Novel SiO2/AlN/HfAlO/IrO2 Memory with Fast Erase, Large ΔVth and Good Retention,” in VLSI Symp. Tech. Dig., 2005, pp. 210–211.
[75] G. Zhang, W. S. Hwang, S. M. Bobade, S.-H. Lee, B.-J. Cho, and W. J. Yoo, “Novel ZrO2-Si3N4 Dual Charge Storage Layer to Form Step-Up Potential Wells for Highly Reliable Multi-Level Cell Application,” in IEDM. Tech. Dig., 2007, pp. 83–86.
[76] Z.-H. Ye, K.-S. Chang-Liao, T.-C. Liu, T.-K.Wang, P.-J. Tzeng, C.-H. Lin, and M.-J. Tsai, “A Novel SONOS-type Flash Device with Stacked Charge Trapping Layer,” Microelectron. Eng., vol. 86, no. 7–9, pp. 1863–1865, July 2009.
[77] T. Melde, M. F. Beug, L. Bach, S. Riedel, C. Ludwig, and T. Mikolaijck, “Nitride Thickness Scaling Limitations in TANOS Charge Trapping Devices,” in Proc. NVEMW ICMTD, 2008, pp. 130–132.
[78] W. J. Zhu, T. Tamagawa, M. Gibson, T. Furukawa, and T. P. Ma, “Effect of Al Inclusion in HfO2 on the Physical and Electrical Properties of The Dielectrics,” IEEE Electron Devices Lett., vol. 23, no. 11, pp. 649–651, November 2002.
[79] A. Padovani, L. Larcher, D. Heh, G. Bersuker, V. Della Marca, and P. Pavan, “Temperature Effects on Metal-Alumina-Nitride-Oxide- Silicon Memory Operations,” Appl. Phys. Lett., vol. 96, no. 22, pp. 223 505-1–223 505-3, May 2010.
[80] Jae-Duk Lee, Sung-Hoi Hur, and Jung-Dal Choi, “Effects of Floating-gate Interference on NAND Flash Memory Cell Operation,” IEEE Electron Device Lett., vol. 23, no. 5, pp.264-266, May 2002.
[81] Jiankang Bu, Marvin H. White, “Design Considerations in Scaled SONOS Nonvolatile Memory Devices,” Solid-State Electronics, vol. 45, no. 1, pp. 113-120, January 2001.
[82] M. L. French, C. Y. Chen, H. Sathianathan, and M. H. White, “Design and Scaling of a SONOS Multidielectric Device for Nonvolatile Memory Applications,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, vol. 17, no. 3. pp. 390-397, September 1994.
[83]Wei He, Jing Pu, Daniel S. H. Chan, and Byung Jin Cho, ” Performance Improvement in Charge-Trap Flash Memory Using Lanthanum-Based High-κ Blocking Oxide,” IEEE Trans. Electron Devices, vol. 56, no. 11, pp. 2746-2751, November 2009.
[84] Zong-Hao Ye, Kuei-Shu Chang-Liao, Feng-Wen Shiu, and Tien-Ko Wang, “Improved Retention Characteristic of Charge-trapped Flash Device with Sealing layer/Al2O3 or Al2O3/high-k Stacked Blocking Layers,” Microelectron. Eng., vol. 88, no. 7, pp. 1194-1197, July 2011.
[85] G. D. Wilk, R. M. Wallace, J. M. Anthony, “High-k Gate Dielectrics: Current Status and Materials Properties Considerations,” J. Appl. Phys., vol. 89, no. 10, pp. 5243-5275, May 2001.
[86] J. Kim, J. D. Choi, W. C. Shin, D. J. Kim, H. S. Kim, K. M. Mang, S. T. Ahn, and O. H. Kwon, “Scaling down of tunnel oxynitride in NAND Flash memory: Oxynitride selection and reliabilities,” in Proc. 35th Annu. IEEE Int. Rel. Phys. Symp., pp. 12–16, 1997.
[87] The International Technology Roadmap for Semiconductors (ITRS), 2007.