簡易檢索 / 詳目顯示

研究生: 林志昂
Lin, Chih-Ang
論文名稱: 錳(II)添加對氧化鐵光電氧化亞甲基藍之研究
Photoelectrochemical Oxidation of Methylene Blue by Hematite with Mn(II) Addition
指導教授: 王竹方
Wang, Chu-Fang
口試委員: 蔣本基
Chiang, Pen-Chi
談駿嵩
Tan, Chung-Sung
黃志彬
Huang, Chih-Pin
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 92
中文關鍵詞: 光電化學降解赤鐵礦二氧化錳
外文關鍵詞: PEC, degradation, hematite, MnO2
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 從綠能技術的觀點來看的話,一個永續的廢水處理系統是被急迫需求的。因此,我們演示了一種包含了亞甲基藍、赤鐵礦和錳(II)的三元系統,此種方法結合了光電化學和高級氧化程序的優點。透過採用添加錳(II)離子的赤鐵礦光陽極,在通以0.2mA的電流及歷經一小時的光照後,亞甲基藍的去顏色比例達到了C/C0<0.03。和傳統的半導體光降解方法相比,這種方法具有更好的效率,並且避免了過氧化氫的添加。此外,與電催化降解法相比,光電催化法減少了能量的消耗,並且在陰極產生了額外的氫氣能源。最重要的是,這些參雜的Mn(II)可以透過形成非晶像的二氧化錳沉澱而完全分離。具有快速、高效率、可回收、金屬離子去除及經濟層面的競爭性的幾個卓越特點,使我們提出的方法是一種有前景的永續廢水處理方法。


    A sustainable wastewater treatment is always highly desired for the perspective of green technology. Herein, we demonstrate a ternary system containing methylene blue, Hematite and Mn2+, which combines the advantages of both PEC and advanced oxidation process (AOP). By adopting hematite as the photoanode with addition of Mn(II) ions, decolorization of methyl blue (C/C0 < 0.03) can be achieved in 1 h with illumination and 0.2 mA applied current. In comparison with traditional semi-conductor photodegradation, this has better efficiency performance and avoid the addition of hydrogen peroxides; Moreover, this reduce energy consumption in comparison with the electrically degradation method and produced additional hydrogen at the cathode. Importantly, spiked Mn(II) can be completely separated by the formation of amorphous MnO2 precipitates. Superior features including fast, efficient, recyclable, simultaneously metal ion removal and economically competitive make our proposed method a promising sustainable wastewater treatment method.

    謝誌 I 中文摘要 II ABSTRACT III CONTENTS IV FIGURE INDEX VIII CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURE REVIEW 4 2.1 REMOVAL OF ORGANIC DYES 4 2.1.1 Advanced Oxidation Processes (AOPs) 4 2.1.2 Adsorption Technique 8 2.1.3 Membrane Separation 10 2.1.4 Chemical Coagulation 11 2.1.5 Microbial Biodegradation 12 2.2 WATER SPLITTING 13 2.2.1 Photocatalytic Process 13 2.2.2 Energy Bands 14 2.2.3 Photoelectrochemical Diagram 16 2.3 HEMATITE PHOTOANODES 17 CHAPTER 3 EXPERIMENTAL 19 3.1 CHEMICAL REAGENTS 19 3.2 EXPERIMENTAL INSTRUMENTS 20 3.2.1 Ultraviolet–Visible Spectroscopy (UV-vis) 21 3.2.2 Electrochemical Analyzer/Workstation 22 3.2.3 Scanning Electron Microscope (SEM) 23 3.2.4 Energy Dispersive X-ray Spectroscopy (EDX) 24 3.2.5 Transmission Electron Microscope (TEM) 25 3.2.6 High Resolution X-ray Photoelectron Spectroscopy (HR-XPS) 27 3.2.7 Zetasizer 29 3.2.8 Multi-Photometer 31 3.2.9 Inductively Coupled Plasma - Mass Spectroscopy (ICP-MS) 33 3.3 EXPERIMENTAL METHODS 36 3.3.1 Preparation of Hematite Electrode (Hydrothermal Synthesis) 36 3.3.2 Degradation Experiment 38 3.3.3 Photoelectrochemical Measurements 39 3.3.4 Morphological and Element Composition Characterization 40 3.3.5 Zeta Potential Measurement 41 3.3.6 COD Measurement 42 3.3.7 Adsorption Experiment 43 CHAPTER 4 RESULTS AND DISCUSSION 45 4.1 PHOTOELECTROCATALYTIC DEGRADATION OF MB 45 4.1.1 The Influence of Photoelectrocatalytic Chemistry 46 4.1.2 The NaHCO3 Electrolyte Effect 48 4.1.3 The Influence of Manganese Ion (Mn2+) 53 4.2 PHOTOELECTROCHEMISTRY OF TERNARY SYSTEM 58 4.2.1 Performance of Photocurrent with Hematite Electrode 58 4.2.2 Performance of Potential-Time Curve 61 4.2.3 Performance of Cyclic Voltammetry 63 4.3 MECHANISM INVOLVED IN THE TERNARY SYSTEM 66 4.3.1 Scan Electron Microscope 66 4.3.2 Transmission Electron Microscope 68 4.3.3 High Resolution X-ray Photoelectron Spectroscopy 71 4.3.4 Mechanism of Degradation with Hematite by PEC 73 CHAPTER 5 CONCLUSIONS AND FUTURE WORKS 76 5.1 CONCLUSIONS 76 5.2 FUTURE WORKS 77 REFERENCE 78 APPENDIX 87

    [1] A.Houas, H.Lachheb, M.Ksibi, E.Elaloui, C.Guillard, andJ. M.Herrmann, “Photocatalytic degradation pathway of methylene blue in water,” Appl. Catal. B Environ., vol. 31, no. 2, pp. 145–157, 2001.
    [2] H.Wang, D.Chu, andE. L.Miller, “Solar Fuel Production for a Sustainable Energy Future : from Sunlight and Electricity,” Electrochem. Soc. Interface, pp. 69–71, 2013.
    [3] J.Ilkay Cesar, Andreas Kay, and M. G.´ A. Gonzalez Martinez, and¨tzel, “Translucent Thin Film Fe2O3 Photoanodes for Efficient Water Splitting by Sunlight: Nanostructure-Directing Effect of Si-Doping,” J. Am. Chem. Soc., vol. 128, no. 14, pp. 4582–4583, 2006.
    [4] K.Sivula, F.Le Formal, andM.Grätzel, “Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes,” ChemSusChem, vol. 4, no. 4, pp. 432–449, Apr.2011.
    [5] M. P.Dare-Edwards, J. B.Goodenough, A.Hamnett, andP. R.Trevellick, “Electrochemistry and photoelectrochemistry of iron(III) oxide,” J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, vol. 79, no. 9, p. 2027, 1983.
    [6] H.Jun, B.Im, J. Y.Kim, Y.-O.Im, J.-W.Jang, E. S.Kim, J. Y.Kim, H. J.Kang, S. J.Hong, andJ. S.Lee, “Photoelectrochemical water splitting over ordered honeycomb hematite electrodes stabilized by alumina shielding,” Energy Environ. Sci., vol. 5, no. 4, pp. 6375–6382, 2012.
    [7] B.Klahr, S.Gimenez, F.Fabregat-Santiago, J.Bisquert, andT. W.Hamann, “Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes,” Energy Environ. Sci., vol. 5, no. 6, p. 7626, 2012.
    [8] H.Zollinger, Color Chemistry: Syntheses, Properties, and Applications of Organic Dyes and Pigments. 2004.
    [9] R. A. H.P.B. Dejohn, Tex. Chem. Color. 8, 69. 1976.
    [10] Y.M. Slokar, A.M. Le Marechal, Dyes Pigments 37 (1998) 335. .
    [11] A.T. More, A. Vira, S. Fogel, Environ. Sci. Technol. 23 (1989) 403. .
    [12] S.S. Patil, V.M. Shinde, Environ. Sci. Technol. 22 (1988) 1160. .
    [13] K.Rajeshwar, “Photoelectrochemistry and the environment,” J. Appl. Electrochem., vol. 25, no. 12, pp. 1067–1082, 1995.
    [14] M.Pera-Titus, V.Garc??a-Molina, M. A.Ba??os, J.Gim??nez, andS.Esplugas, “Degradation of chlorophenols by means of advanced oxidation processes: A general review,” Appl. Catal. B Environ., vol. 47, no. 4, pp. 219–256, 2004.
    [15] A.Al-Kdasi, A.Idris, K.Saed, andC. T.Guan, “Treatment of Textile Wastewater By Advanced Oxidation Processes – a Review,” Glob. Nest Int. J, vol. 6, no. 3, pp. 222–230, 2004.
    [16] M.Rafatullah, O.Sulaiman, R.Hashim, andA.Ahmad, “Adsorption of methylene blue on low-cost adsorbents: A review,” J. Hazard. Mater., vol. 177, no. 1–3, pp. 70–80, 2010.
    [17] P. C.Vandevivere, R.Bianchi, andW.Verstraete, “Treatment and reuse of wastewater from the textile wet-processing industry: Review of emerging technologies,” J. Chem. Technol. Biotechnol., vol. 72, no. 4, pp. 289–302, 1998.
    [18] J.Dasgupta, J.Sikder, S.Chakraborty, S.Curcio, andE.Drioli, “Remediation of textile effluents by membrane based treatment techniques: A state of the art review,” J. Environ. Manage., vol. 147, pp. 55–72, Jan.2015.
    [19] M. A.Mahadik, S. S.Shinde, V. S.Mohite, S. S.Kumbhar, A. V.Moholkar, K. Y.Rajpure, V.Ganesan, J.Nayak, S. R.Barman, andC. H.Bhosale, “Visible light catalysis of rhodamine B using nanostructured Fe2O3, TiO2 and TiO2/Fe2O3 thin films,” J. Photochem. Photobiol. B Biol., vol. 133, pp. 90–98, Apr.2014.
    [20] C.TURCHI, “Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack,” J. Catal., vol. 122, no. 1, pp. 178–192, Mar.1990.
    [21] W. H.Glaze, J.-W.Kang, andD. H.Chapin, “The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation,” Ozone Sci. Eng., vol. 9, no. 4, pp. 335–352, Sep.1987.
    [22] National Water Research Institute, Treatment Technologies for Removal of Methyl Tertiary Butyl Ether (MTBE) from Drinking Water: Chapter III Advanced Oxidation Processes. 2000.
    [23] M.Miyauchi, A.Nakajima, T.Watanabe, andK.Hashimoto, “Photocatalysis and Photoinduced Hydrophilicity of Various Metal Oxide Thin Films Photocatalysis and Photoinduced Hydrophilicity of,” no. 24, pp. 2812–2816, 2002.
    [24] W.Zhao, W.Ma, C.Chen, J.Zhao, andZ.Shuai, “Efficient Degradation of Toxic Organic Pollutants with Ni O / TiO B under Visible Irradiation,” J. Am. Chem. Soc., vol. 126, no. 15, pp. 2–4, 2004.
    [25] G.Zhang, Y.Gao, Y.Zhang, andY.Guo, “Fe 2 O 3 -Pillared Rectorite as an Efficient and Stable Fenton-Like Heterogeneous Catalyst for Photodegradation of Organic Contaminants,” Environ. Sci. Technol., vol. 44, no. 16, pp. 6384–6389, 2010.
    [26] J.Kim, C. W.Lee, andW.Choi, “Platinized WO 3 as an Environmental Photocatalyst that Generates OH Radicals under Visible Light,” Environ. Sci. Technol., vol. 44, no. 17, pp. 6849–6854, 2010.
    [27] C.Hariharan, “Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited,” Appl. Catal. A Gen., vol. 304, pp. 55–61, May2006.
    [28] I. K.Konstantinou andT. A.Albanis, “TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations,” Appl. Catal. B Environ., vol. 49, no. 1, pp. 1–14, Apr.2004.
    [29] C.Namasivayam andD.Kavitha, “Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste,” Dye. Pigment., vol. 54, no. 1, pp. 47–58, 2002.
    [30] N. N.Nassar, “Kinetics, Mechanistic, Equilibrium, and Thermodynamic Studies on the Adsorption of Acid Red Dye from Wastewater by γ-Fe 2 O 3 Nanoadsorbents,” Sep. Sci. Technol., vol. 45, no. 8, pp. 1092–1103, 2010.
    [31] C. H.Weng andY. F.Pan, “Adsorption of a cationic dye (methylene blue) onto spent activated clay,” J. Hazard. Mater., vol. 144, no. 1–2, pp. 355–362, 2007.
    [32] R. K.Ghosh andD. D.Reddy, “Tobacco stem ash as an adsorbent for removal of methylene blue from aqueous solution: Equilibrium, kinetics, and mechanism of adsorption,” Water. Air. Soil Pollut., vol. 224, no. 6, 2013.
    [33] M. T.Yagub, T. K.Sen, S.Afroze, andH. M.Ang, “Dye and its removal from aqueous solution by adsorption: A review,” Adv. Colloid Interface Sci., vol. 209, pp. 172–184, 2014.
    [34] the free media repository. R.File:Absorption et adsorption.svg. (2016, November 16). Wikimedia Commons and201711:08, July 5, “No Title.” [Online]. Available: https://commons.wikimedia.org/w/index.php?title=Special:CiteThisPage&page=File%3AAbsorption_et_adsorption.svg&id=214621344.
    [35] E. E.Pérez-Ramírez, M. delaLuz-Asunción, A.L.Martínez-Hernández, andC.Velasco-Santos, “Graphene Materials to Remove Organic Pollutants and Heavy Metals from Water: Photocatalysis and Adsorption,” Semicond. Photocatal. - Mater. Mech. Appl., p. Ch. 0, 2016.
    [36] Y.Xie, C.He, L.Liu, L.Mao, K.Wang, Q.Huang, M.Liu, Q.Wan, F.Deng, H.Huang, X.Zhang, andY.Wei, “Carbon nanotube based polymer nanocomposites: biomimic preparation and organic dye adsorption applications,” RSC Adv., vol. 5, no. 100, pp. 82503–82512, 2015.
    [37] TU Berlin script, “Principles of Membrane Processes.” .
    [38] P.Xu, J. E.Drewes, T.-U.Kim, C.Bellona, andG.Amy, “Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications,” J. Memb. Sci., vol. 279, no. 1–2, pp. 165–175, Aug.2006.
    [39] Y.Han, Z.Xu, andC.Gao, “Ultrathin graphene nanofiltration membrane for water purification,” Adv. Funct. Mater., vol. 23, no. 29, pp. 3693–3700, 2013.
    [40] M. R. S.Kebria, M.Jahanshahi, andA.Rahimpour, “SiO2 modified polyethyleneimine-based nanofiltration membranes for dye removal from aqueous and organic solutions,” Desalination, vol. 367, no. July, pp. 255–264, 2015.
    [41] K. C.Diawara, “Nanofiltration Process Efficiency in Water Desalination,” Sep. Purif. Rev., vol. 37, pp. 302–324, 2008.
    [42] J.-Q.Jiang, “The role of coagulation in water treatment,” Curr. Opin. Chem. Eng., vol. 8, pp. 36–44, May2015.
    [43] S.Papić, N.Koprivanac, A.Lončarić Božić, andA.Meteš, “Removal of some reactive dyes from synthetic wastewater by combined Al(III) coagulation/carbon adsorption process,” Dye. Pigment., vol. 62, no. 3, pp. 291–298, 2004.
    [44] J. R.Jeon, E. J.Kim, Y. M.Kim, K.Murugesan, J. H.Kim, andY. S.Chang, “Use of grape seed and its natural polyphenol extracts as a natural organic coagulant for removal of cationic dyes,” Chemosphere, vol. 77, no. 8, pp. 1090–1098, 2009.
    [45] S.Wang, H. M.Ang, andM. O.Tadé, “Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes,” Chemosphere, vol. 72, no. 11, pp. 1621–1635, 2008.
    [46] L.Chekli, C.Eripret, S. H.Park, S. A. A.Tabatabai, O.Vronska, B.Tamburic, J. H.Kim, andH. K.Shon, “Coagulation performance and floc characteristics of polytitanium tetrachloride (PTC) compared with titanium tetrachloride (TiCl4) and ferric chloride (FeCl3) in algal turbid water,” Sep. Purif. Technol., vol. 175, pp. 99–106, 2017.
    [47] M. M.Daniela Cadar, Nicoleta Liliana Olteanu’Correspondence information about the author Nicoleta Liliana OlteanuEmail the author Nicoleta Liliana Olteanu, Elena Adina Rogozea, Adina Roxana Petcu, Aurelia Meghea, “Recovery of targeted hydrophilic compounds from simulated wastewaters using nonionic microemulsion systems,” vol. 109, pp. 648–658, 2017.
    [48] A. A.-I.Koukkou, Microbial Bioremediation of Non-metals: Current Research. 2011.
    [49] E.Diaz, Microbial Biodegradation: Genomics and Molecular Biology. 2010.
    [50] T.Robinson, G.McMullan, R.Marchant, andP.Nigam, “Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative,” Bioresour. Technol., vol. 77, no. 3, pp. 247–255, May2001.
    [51] B.Chem, P.Res, D.Mary, andA. S. A.Prasad, “Microbial Decolorization of Azo Dyes ̶ A Mini Review,” vol. 1, no. 1, pp. 30–39, 2017.
    [52] W.Jiao, W.Shen, Z. U.Rahman, andD.Wang, “Recent progress in red semiconductor photocatalysts for solar energy conversion and utilization,” Nanotechnol. Rev., vol. 5, no. 1, pp. 135–145, 2016.
    [53] T.Bak, J.Nowotny, M.Rekas, andC. C.Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy,” Int. J. Hydrogen Energy, vol. 27, no. 2002, pp. 991–1022, 2002.
    [54] A. G.Tamirat, J.Rick, A. A.Dubale, W.-N.Su, andB.-J.Hwang, “Using hematite for photoelectrochemical water splitting: a review of current progress and challenges,” Nanoscale Horiz., vol. 1, no. 4, pp. 243–267, 2016.
    [55] B.Iandolo, B.Wickman, I.Zorić, andA.Hellman, “The rise of hematite: origin and strategies to reduce the high onset potential for the oxygen evolution reaction,” J. Mater. Chem. A, vol. 3, no. 33, pp. 16896–16912, 2015.
    [56] J. H.Kennedy, “Photooxidation of Water at α-Fe[sub 2]O[sub 3] Electrodes,” J. Electrochem. Soc., vol. 125, no. 5, p. 709, 1978.
    [57] A.Kay, I.Cesar, andM.Grätzel, “New Benchmark for Water Photooxidation by Nanostructured r -Fe 2 O 3 Films,” J. Am. Chem. Soc., no. 7, pp. 15714–15721, 2006.
    [58] A.Kleiman-Shwarsctein, M. N.Huda, A.Walsh, Y.Yan, G. D.Stuckyst, Y. S.Hu, M. M.Al-Jassim, andE. W.McMland, “Electrodeposited aluminum-doped α-Fe2O3 photoelectrodes: Experiment and theory,” Chem. Mater., vol. 22, no. 2, pp. 510–517, 2010.
    [59] V. R.Satsangi, S.Kumari, A. P.Singh, R.Shrivastav, andS.Dass, “Nanostructured hematite for photoelectrochemical generation of hydrogen,” Int. J. Hydrogen Energy, vol. 33, no. 1, pp. 312–318, 2008.
    [60] W. B.Ingler andS. U. M.Khan, “Photoresponse of spray pyrolytically synthesized magnesium-doped iron (III) oxide (p-Fe2O3) thin films under solar simulated light illumination,” Thin Solid Films, vol. 461, no. 2, pp. 301–308, 2004.
    [61] Y.Hsu, S.Lee, andJ.Chang, “Effects of Platinum Doping on the Photoelectrochemical Properties of Fe 2 O 3 Electrodes.,” Int. …, vol. 8, no. 2013, pp. 11615–11623, 2013.
    [62] N. T.Hahn andC. B.Mullins, “Photoelectrochemical performance of nanostructured Ti- and Sn-doped ??-Fe2O3 photoanodes,” Chem. Mater., vol. 22, no. 23, pp. 6474–6482, 2010.
    [63] I.Cesar, K.Sivula, A.Kay, R.Zboril, andM.Grätzel, “Influence of Feature Size, Film Thickness, and Silicon Doping on the Performance of Nanostructured Hematite Photoanodes for Solar Water Splitting,” J. Phys. Chem. C, vol. 113, no. 2, pp. 772–782, 2009.
    [64] G.Wang, Y.Ling, D. aWheeler, K. E. N.George, K.Horsley, C.Heske, J. Z.Zhang, andY.Li, “Facile Synthesis of Highly Photoactive α-Fe(2)O(3)-Based Films for Water Oxidation.,” Nano Lett., vol. 11, no. 8, pp. 3503–3509, 2011.
    [65] G.Yan, M.Zhang, J.Houa, andJ.Yang, “Photoelectrochemical and photocatalytic properties of N + S co-doped TiO2 nanotube array films under visible light irradiation,” Mater. Chem. Phys., vol. 129, no. 1–2, p. 5, 2011.
    [66] A.Duret andM.Grätzel, “Visible Light-Induced Water Oxidation on Mesoscopic α-Fe2O3 Films Made by Ultrasonic Spray Pyrolysis,” J. Phys. Chem. B, vol. 109, no. 36, pp. 17184–17191, 2005.
    [67] F.LeFormal, M.Grätzel, andK.Sivula, “Controlling photoactivity in Ultrathin Hematite films for solar water-splitting,” Adv. Funct. Mater., vol. 20, no. 7, pp. 1099–1107, 2010.
    [68] and E. R. L.Goncalves, R.H., B.H. Lima, “Magnetite colloidal nanocrystals: A facile pathway to prepare mesoporous hematite thin films for photoelectrochemical water splitting,” J. Am. Chem. Soc., vol. 133, no. 15, pp. 6012–6019, 2011.
    [69] D. K.Zhong, J.Sun, H.Inumaru, andD. R.Gamelin, “Solar Water Oxidation by Composite Catalyst/α-Fe2O3 Photoanodes,” J. Am. Chem. Soc., vol. 131, no. 17, pp. 6086–6087, 2009.
    [70] M.Zhu, Y.Wang, D.Meng, X.Qin, andG.Diao, “Hydrothermal Synthesis of Hematite Nanoparticles and their Electrochemical Properties Hydrothermal Synthesis of Hematite Nanoparticles and their Electrochemical Properties College of Chemistry and Chemical Engineering , Yangzhou University , Yangzhou ,” J. Phys. Chem. C, vol. 116, p. 16276−16285, 2012.
    [71] H. G.Cha, J.Song, H. S.Kim, W.Shin, K. B.Yoon, andY. S.Kang, “Facile preparation of Fe2O3 thin film with photoelectrochemical properties.,” Chem. Commun. (Camb)., vol. 47, no. 8, pp. 2441–3, 2011.
    [72] and Y. L.Yichuan Ling, Gongming Wang, Damon A. Wheeler, Jin Z. Zhang, “Sn-doped hematite nanostructures for photoelectrochemical water splitting,” Nano Lett., vol. 11, no. 5, pp. 2119–2125, 2011.
    [73] Y. S.Hu, A.Kleiman-Shwarsctein, A. J.Forman, D.Hazen, J. N.Park, andE. W.McFarland, “Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting,” Chem. Mater., vol. 20, no. 12, pp. 3803–3805, 2008.
    [74] S. R.Skoog, Douglas A.; Holler, F. James; Crouch, Principles of Instrumental analysis. 2007.
    [75] “PT_AA_Poster.gif.” [Online]. Available: http://faculty.sdmiramar.edu/fgarces/labmatters/instruments/uv_vis/cary50.htm.
    [76] “Model CHI600D Series Potentiostat.” [Online]. Available: http://www.ijcambria.com/Model_600D_Series.htm.
    [77] “Model CHI600D Series Potentiostat.” .
    [78] “Hitachi S-4700.” [Online]. Available: http://research.amnh.org/mif/hitachi-s-4700.
    [79] “SEM.” [Online]. Available: http://www.nscric.nthu.edu.tw/EM/Bio-temsem/sem.jpg.
    [80] J. et al.Goldstein, Scanning electron microscopy and X-ray microanalysis. 2003.
    [81] “File:EDX-scheme.svg,” 2014. [Online]. Available: https://commons.wikimedia.org/w/index.php?title=File:EDX-scheme.svg&oldid=133784449.
    [82] “The schematic outline of a TEM.” [Online]. Available: http://www.hk-phy.org/atomic_world/tem/tem02_e.html.
    [83] “File:XPS PHYSICS.png,” 2015. [Online]. Available: https://commons.wikimedia.org/w/index.php?title=File:XPS_PHYSICS.png&oldid=161361580.
    [84] “Zetasizer Nano ZS.” [Online]. Available: https://www.malvern.com/en/products/product-range/zetasizer-range/zetasizer-nano-range/zetasizer-nano-zs.
    [85] “MD 600 MAXI DIRECT.” [Online]. Available: http://www.lovibondwater.com/product/maxi-direct.aspx.
    [86] “File:md600.jpg.” [Online]. Available: http://img.lovibond.com//light_md6002.jpg.
    [87] “Inductively Coupled Plasma Mass Spectrometry, ICP-MS.” [Online]. Available: http://www.ma-tek.jp/service/bio/bio06.html.
    [88] D.Kavitha andC.Namasivayam, “Experimental and kinetic studies on methylene blue adsorption by coir pith carbon,” Bioresour. Technol., vol. 98, no. 1, pp. 14–21, 2007.
    [89] S. S.Barton, “the Adsorption of Methylene Active Carbon Blue By,” Carbon N. Y., vol. 25, pp. 343–350, 1987.
    [90] J. J.Pignatello, E.Oliveros, andA.MacKay, “Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry,” Crit. Rev. Environ. Sci. Technol., vol. 36, no. 1, pp. 1–84, 2006.
    [91] W.-D.Oh, Z.Dong, andT.-T.Lim, “Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects,” Appl. Catal. B-Environmental, vol. 194, pp. 169–201, 2016.
    [92] H. L.Friedman, “Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic,” J. Polym. Sci. Part C Polym. Symp., vol. 6, no. 1, pp. 183–195, 2007.
    [93] W. S.Kuo andP. H.Ho, “Solar photocatalytic decolorization of methylene blue in water,” Dye. Pigment., vol. 45, 2001.
    [94] S.Yang, P.Wang, X.Yang, L.Shan, W.Zhang, X.Shao, andR.Niu, “Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide,” J. Hazard. Mater., vol. 179, no. 1–3, pp. 552–558, 2010.
    [95] Y.Baba, T.Yatagai, T.Harada, andY.Kawase, “Hydroxyl radical generation in the photo-fenton process: Effects of carboxylic acids on iron redox cycling,” Chem. Eng. J., vol. 277, pp. 229–241, 2015.
    [96] L.Demarchis, M.Minella, R.Nisticò, V.Maurino, C.Minero, andD.Vione, “Photo-Fenton reaction in the presence of morphologically controlled hematite as iron source,” J. Photochem. Photobiol. A Chem., vol. 307–308, pp. 99–107, 2015.
    [97] Y.Meng, W.Song, H.Huang, Z.Ren, S. Y.Chen, andS. L.Suib, “Structure-property relationship of bifunctional MnO2 nanostructures: Highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media,” J. Am. Chem. Soc., vol. 136, no. 32, pp. 11452–11464, 2014.
    [98] M. T.Mayer, C.Du, andD.Wang, “Hematite/Si nanowire dual-absorber system for photoelectrochemical water splitting at low applied potentials,” J. Am. Chem. Soc., vol. 134, no. 30, pp. 12406–12409, 2012.
    [99] C.Chen, W.Ma, J.Zhao, M. Y. M.Pau, J. D.Lipscomb, E. I.Solomon, D. T.Sawyer, J. S.Valentine, M.Costas, M. P.Mehn, M. P.Jensen, L.Que, T.Mallat, A.Baiker, O.Legrini, E.Oliveros, A. M.Braun, M. R.Hoffmann, S. T.Martin, et al., “Semiconductor-mediated photodegradation of pollutants under visible-light irradiation,” Chem. Soc. Rev., vol. 39, no. 11, p. 4206, 2010.
    [100] F.LeFormal, K.Sivula, andM.Grätzel, “The transient photocurrent and photovoltage behavior of a hematite photoanode under working conditions and the influence of surface treatments,” J. Phys. Chem. C, vol. 116, no. 51, pp. 26707–26720, 2012.
    [101] C.Costentin, S.Drouet, M.Robert, andJ. M.Sav?ant, “Turnover numbers, turnover frequencies, and overpotential in molecular catalysis of electrochemical reactions. Cyclic voltammetry and preparative-scale electrolysis,” J. Am. Chem. Soc., vol. 134, no. 27, pp. 11235–11242, 2012.
    [102] E.Brillas andC. A.Martínez-Huitle, “Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review,” Appl. Catal. B Environ., vol. 166–167, pp. 603–643, 2015.
    [103] M.Barroso, S. R.Pendlebury, A. J.Cowan, andJ. R.Durrant, “Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes,” Chem. Sci., vol. 4, p. 2724, 2013.

    QR CODE