研究生: |
賴宜君 Lai, Yi-Chun |
---|---|
論文名稱: |
Economics Job Market Rumors 論壇上的反亞裔言論 Anti-Asian on Economics Job Market Rumors Forum |
指導教授: |
楊睿中
Yang, Jui-Chung 蔡璧涵 Tsai, Pi-Han |
口試委員: |
郭俊宏
Kuo, Chun-Hung 楊子霆 Yang, Tzu-Ting |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 經濟學系 Department of Economics |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 47 |
中文關鍵詞: | 雙重篩選 、社交網路 、文字資料 、資訊與知識 、種族歧視 |
外文關鍵詞: | Double Selection, Social Network, Text Data, Information and Knowledge, Racial Discrimination |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
針對亞裔的仇恨犯罪已經成為需要關注的議題,尤其是COVID-19疫情期間。本文旨在通過利用Economic Job Market Rumors論壇的文字資料和採用計量經濟學模型,了解在網絡平台上對亞洲人形象。通過Word2Vec,我們發現不同的民族和國籍所討論的主題和所使用的詞彙是不同的。此外,這些討論中根據主題會使用特定詞彙,例如,在與中國有關的主題時,會出現與貿易有關的字詞,這反映了中美貿易戰的影響。此外,透過使用雙重選擇(double selection),觀察與個人特徵相關的詞彙與亞裔主題的相關性以及信賴區間。
本文發現根據不同的前處理會影響研究結果。並且發現在正向字詞及負向字詞皆有顯著,這顯示了此論壇針對亞裔族群的雙面印象。
Hate crimes targeting individuals of Asian descent have emerged as a significant concern, particularly in light of the ongoing COVID-19 pandemic. This research aims to contribute to the understanding of how Asians are portrayed in online platforms by utilizing textual data from the Economic Job Market Rumors forum and employing econometric models. Through extensive analysis, it has been observed that the subjects discussed and the vocabulary employed vary across different ethnic groups and nationalities. Moreover, specific terms used in these threads directly correspond to real-world events. For instance, when examining conversations related to China, there is a notable presence of trade-related terminology, which reflects the influence of the trade war era. Furthermore, by employing the double selection method and determining the significance of words associated with individual characteristics, along with the inclusion of confidence intervals, the study sheds light on the variations and similarities that arise based on the chosen preprocessing techniques. And not only negative but also positive terms are significant, underscoring a polarized impression prevalent within the forum's community on Asians.
Kenneth J. Arrow. THE THEORY OF DISCRIMINATION, pages 1–33. Princeton University Press, Princeton, 1974. ISBN 978-1-4008-6706-6. doi: 10.1515/ 9781400867066-003. URL https://doi.org/10.1515/9781400867066-003.
Kenneth J. Arrow. What has economics to say about racial discrimination? Journal of Economic Perspectives, 12(2):91–100, June 1998. doi: 10.1257/jep.12.2.91. URL https://www.aeaweb.org/articles?id=10.1257/jep.12.2.91.
Gary Becker. The economics of discrimination. University of Chicago Press, 1957.
Alexandre Belloni, Victor Chernozhukov, and Christian Hansen. Inference on treatment effects after selection among high-dimensional controls. The Review of Economic Studies, 81(2):608–650, 2014.
Nicholas Biddle, Matthew Gray, and Jieh-Yung Lo. The experience of Asian-australians during the covid-19 pandemic: Discrimination and wellbeing, 2020.
Mollimichelle K Cabeldue, Robert J Cramer, Andre Kehn, James W Crosby, and Jeffrey S Anastasi. Measuring attitudes about hate: Development of the hate crime beliefs scale. Journal of interpersonal violence, 33(23):3656–3685, 2018.
Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, and James Robins. Double/debiased machine learning for treatment and structural parameters, 2018a.
Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, and James Robins. Double/debiased machine learning for treatment and structural parameters. The Econometrics Jour nal, 21(1):C1–C68, 2018b. doi: https://doi.org/10.1111/ectj.12097. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/ectj.12097. 45
Harold D Chiang. Many average partial effects: With an application to text regression. arXiv preprint arXiv:1812.09397, 2018.
D. Chung, Dai and R. Elliott. Dp17410 measuring brexit uncertainty: A machine learning and textual analysis approach, 2022.
Matthew Gentzkow, Bryan Kelly, and Matt Taddy. Text as data. Journal of Economic Literature, 57(3):535–74, 2019.
Angela R Gover, Shannon B Harper, and Lynn Langton. Anti-asian hate crime during the covid-19 pandemic: Exploring the reproduction of inequality. American journal of criminal justice, 45:647–667, 2020.
Donald P Green, Laurence H McFalls, and Jennifer K Smith. Hate crime: An emergent research agenda. Annual review of sociology, 27(1):479–504, 2001.
Sang Hea Kil. Fearing yellow, imagining white: Media analysis of the chinese exclusion act of 1882. Social Identities, 18(6):663–677, 2012.
Kevin Lang and Ariella Kahn-Lang Spitzer. Race discrimination: An economic perspective. Journal of Economic Perspectives, 34(2):68–89, 2020.
Yao Li and Harvey L Nicholson Jr. When “model minorities” become “yellow peril”—othering and the racialization of asian americans in the covid-19 pandemic. Sociology compass, 15(2):e12849, 2021.
Nicolai Meinshausen and Peter Bühlmann. High-dimensional graphs and variable selection with the lasso. The Annals of Statistics, 2006.
Thien Hai Nguyen, Kiyoaki Shirai, and Julien Velcin. Sentiment analysis on social media for stock movement prediction. Expert Systems with Applications, 42(24): 9603–9611, 2015. 46 OED Online. Asian, n. and adj. https://www.oed.com/view/Entry/11479? redirectedFrom=asian, 2023. Accessed: 2023-7-6.
Sara Van de Geer, Peter Bühlmann, Ya’acov Ritov, and Ruben Dezeure. On asymptotically optimal confidence regions and tests for high-dimensional models. Ann. Statist., 42(3):1166–1202, 2014.
AW van der Vaart et al. Asymptotic statistics. Cambridge Books, 1998.
Alice H Wu. Gendered language on the economics job market rumors forum. In AEA Papers and Proceedings, volume 108, pages 175–179. American Economic Association 2014 Broadway, Suite 305, Nashville, TN 37203, 2018.
Alice H Wu. Gender bias among professionals: an identity-based interpretation. Review of Economics and Statistics, 102(5):867–880, 2020.
Cun-Hui Zhang and Stephanie S Zhang. Confidence intervals for low dimensional parameters in high dimensional linear models. Journal of the Royal Statistical Society: Series B: Statistical Methodology, pages 217–242, 2014.