簡易檢索 / 詳目顯示

研究生: 李名哲
Li,Ming-Che
論文名稱: 基於古典同位元檢查矩陣的量子穩定碼之進一步研究
A Further Study on Quantum Stabilizer Codes Based on Classical Parity-Check Matrices
指導教授: 呂忠津
Lu,Chung-Chin
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 97
語文別: 中文
論文頁數: 30
中文關鍵詞: 量子錯誤更正碼量子穩定碼二次剩餘碼
外文關鍵詞: Quantum error-correcting codes, Quantum stabilizer codes, Quadratic-residue codes
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近十年來,因量子電腦建構方法的提出,量子領域的研究開始蓬勃地發展,為了解決量子態會因環境的影響產生相消干(decoherence)的問題,以及在量子通訊上通道的影響,如何更正量子位元的錯誤,是量子錯誤更正碼研究的主要目標。其中量子穩定碼是最為廣泛研究的量子錯誤更正碼,因為量子穩定碼可藉由古典的同位元檢查矩陣來建構,並藉由錯誤徵狀來偵測並修正量子位元錯誤,和古典的線性碼有很多類似的性質。然而,量子穩定碼建構相關的檢查矩陣須滿足交換關係,使得量子穩定碼一直未能有較CSS建構法更簡單的建構方式。

    在本篇論文裡,我們針對量子穩定碼的檢查矩陣建構法,提出如何簡單滿足交換關係的建構方式。首先,我們提出使用古典循環碼的建構法,藉由生成矩陣的一些變化,可以簡單地滿足交換關係,但是量子最小碼距,仍未有方法使其達到最大限度。其次,我們研究使用二元二次剩餘碼的特性來建構的兩種量子穩定碼-CSS建構法和量子二元二次剩餘碼,比較兩種建構法下其量子穩定碼的特性,包括適用碼長、最小碼距。藉由量子二元二次剩餘碼的啟發,[[n, 1]]量子穩定碼已被發現可藉由某些指引向量簡單地建構出來,我們針對指引向量,提出一個建構準則和相關的性質。接著我們將該種建構法延伸發展,提出[[n, k]]量子穩定碼的簡單建構方式,並指出該量子穩定碼最小碼距和指引向量之間的關係。但如何使得建構的量子穩定碼可以達到最小碼距的最大限距,則是未來可以思考及研究的方向。


    In the study of quantum error-correcting codes, stabilizer codes is perhaps the most
    important ones and can be constructed by classical self-orthogonal codes. In this thesis,
    our aim is to pursue a further study of the structure of quantum stabilizer codes based
    on syndrome assignment by classical parity check matrices. We proposed a construction
    by using two cyclic codes. We also found the normalizer of quantum quadratic-residue
    codes, which helps nd the minimum distance. Finally, a construction of [[n; k]] quantum
    stabilizer codes with k > 1 was proposed.

    第一章 簡介 第二章 量子穩定碼的建構 第三章 基於二元二次剩餘碼的量子穩定碼建構 第四章 二元二次剩餘碼啟發的量子穩定碼建構 第五章 結論 附 錄  英文論文本 Contents 1 Introduction 1 2 Construction of Quantum Stabilizer Codes 3 2.1 Stabilizer Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Binary Representation of Stabilizer Groups . . . . . . . . . . . . . . . . . 4 2.3 Construction of Quantum Stabilizer Codes . . . . . . . . . . . . . . . . . 6 2.3.1 Error Syndromes . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3.2 Syndrome Assignment by a Binary Parity-Check Matrix . . . . . 7 2.3.3 Some Construction of Check Matrices . . . . . . . . . . . . . . . . 8 3 Construction of Quantum Stabilizer Codes by Binary Quadratic-Residue Codes 11 3.1 Quantum Circulant Codes . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Quadratic-Residue Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 CSS Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.4 Quantum Quadratic-Residue Codes . . . . . . . . . . . . . . . . . . . . . 14 3.5 Comparison About Quantum Minimum Distance . . . . . . . . . . . . . 16 4 Construction of Quantum Codes Inspired by Binary Quadratic-Residue Codes 18 4.1 A Construction for Quantum Codes with k = 1 . . . . . . . . . . . . . . 18 4.2 A Construction for Quantum Codes with k = 2 . . . . . . . . . . . . . . 21 4.3 A General Construction for Quantum Codes . . . . . . . . . . . . . . . . 25 5 Conclusion 28

    [1] W. K. Wootters and W. H. Zurek, "A single quantum cannot be cloned," Nature,
    vol. 299, no. 5886, pp. 802-803, 1982.
    [2] P. W. Shor, "Scheme for reducing decoherence in quantum computer memory,"
    Phys. Rev. A, vol. 52, p. 2493, 1995.
    [3] A. M. Steane, "Error correcting codes in quantum theory," Phys. Rev. Lett., vol. 77,
    no. 5, pp. 793-797, 1996.
    [4] A. R. Calderbank and P. W. Shor, "Good quantum error-correcting codes exist,"
    Phys. Rev. A, vol. 54, no. 2, pp. 1098-1106, 1996.
    [5] A. M. Steane, "Simple quantum error correcting codes," Phys. Rev. Lett., vol. 77,
    pp. 793-797, 1996.
    [6] A. Steane, "Multiple particle interference and quantum error correction," Proc.
    Roy. Soc. Lond. A, vol. 452, pp. 2551-2576, 1996.
    [7] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, "Quantum error
    correction and orthogonal geometry," Phys. Rev. Lett., vol. 78, no. 3, pp. 405-408,
    1997.
    [8] D. Gottesman, "Class of quantum error-correcting codes saturating the quantum
    hamming bound," Phys. Rev. A, vol. 54, no. 3, pp. 1862-1868, 1996.
    [9] D. Gottesman, "Stabilizer codes and quantum error correction," Ph.D. dissertation, Califor-
    nia Institute of Technology, Pasadena, CA, 1997.
    [10] C. H. Bennett, D. DiVincenzo, J. A. Smolin, and W. K. Wootters, "Mixed state
    entanglement an quantum error correction," Phys. Rev. A, vol. 54, pp. 3824-3851,
    1996.
    [11] A. Ekert and C. Macchiavello, "Error correction in quantum communication," Phys.
    Rev. Lett., vol. 77, pp. 2585-2588, 1996.
    [12] E. Knill and R. La
    amme, "Theory of quantum error-correcting codes," Phys. Rev.
    A, vol. 55, pp. 900-911, 1997.
    [13] C.-Y. Lai and C.-C. Lu, "A construction of quantum stabilizer codes based on
    syndrome assignment by classical parity-check matrices," arXiv:0712.0103v1[quant-
    ph].
    [14] A. R. Calderbank, E. Rains, P. W. Shor, and N. J. A. Sloane, "Quantum error
    correction via codes over GF(4)," IEEE Trans. Inform. Theory, vol. 44, no. 4, pp.
    1369-1387, 1998.
    [15] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes.
    Amdterdam, The Netherlands: North-Holland, 1977.
    [16] A. M. Steane, "Enlargement of calderbank shor steane quantum codes," IEEE
    Trans. Inform. Theory, vol. 45, no. 7, pp. 2492-2495, 1999.
    [17] T.-K. Truong, Y. Chang, and C.-D. Lee, "The weight distributions of some binary
    quadratic residue codes," IEEE Trans. Inform. Theory, vol. 51, no. 5, pp. 1776-
    1782, 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE