簡易檢索 / 詳目顯示

研究生: 林祐玄
Lin, Yu-Hsuan .
論文名稱: 標準CMOS製程下實現高響應度橫向光感測電晶體之研究
Research on Lateral Bipolar Phototransistors with High-Responsivity in the Standard CMOS Technology
指導教授: 徐永珍
Hsu, Yung-Jane
口試委員: 賴宇紳
Lai, Yu-Sheng
黃吉成
Huang, Ji-Chen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 94
中文關鍵詞: 光感測器光電晶體橫向雙極性電晶體標準CMOS製程高響應度
外文關鍵詞: Optical sensor, Phototransistor, Lateral BJT, Standard CMOS process, High responsivity
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中提出並實現俱備高響應度的橫向光電晶體架構,為了避免照光時基板的慢速擴散載子對光電晶體響應速度造成影響,我們於元件外部加上保護環結構以隔絕慢速擴散載子的干擾,進而提升整體元件的操作速度。
    本論文的橫向光電晶體架構均為不更動任何現有製程條件的情況下,使用TSMC 0.18μm標準CMOS製程製作並在設計上達成低操作電壓下即可實現高響應度的優勢。量測結果顯示出當橫向光電晶體操作在0.5V時,其在特定波長下即能有31.49(kA/W)的響應輸出。相較於常應用於光感測器的異質接面光電晶體來說,在響應度上至少有一個數量級以上的成長。然而受限於元件基極底部的P型阱內部寄生效應影響,使得元件在主動區為10μm×10μm時便有高達1.4ms的下降時間,導致元件響應速度不如預期,為此本論文亦提出改善的方法。
    最後,由TCAD模擬結果顯示本次設計之橫向光電晶體主要偵測能力多落於可見光波段,故本論文嘗試將Body-strapped Base機制回收深層基板載子的特性應用於橫向光電晶體架構上,將橫向光電晶體的偵測範圍進一步擴增至近紅外光波段。然而藉由TCAD模擬及實際量測發現Body-strapped Base機制的元件響應度在近紅外光波段時並無顯著增加,為此透過模擬找出問題所在並提出保護環上增設漏電途徑的概念,即可恢復Body-strapped Base機制於近紅外光波段對元件響應度的放大能力。


    In this thesis, we propose and realize a lateral phototransistor (LPT) architecture equipped with high-responsivity. To avoid the slow diffusion carriers of P-substrate under illuminated conditions make the response time of phototransistor get worse, we design a guard-ring structure around the device to keep out the disturbance which caused by slow diffusion carriers and then improve the operating-speed of LPT.
    In this thesis, we present a lateral phototransistor using the TSMC 0.18μm standard CMOS process without any process modifications and achieve the design merit of high-responsivity under the low operating voltage. Measurement also indicate that the responsivity of LPT will be as high as 31.49(kA/W) under the certain wavelength when the device biases at 0.5V. Comparing with the heterojunction phototransistor (HPT), the responsive growth of LPT has at least surpassed an order of magnitude. However, Response time of LPT is limited by the parasitic effect in the P-well which make the fall time of a 10μm×10μm device up to 1.4ms. Therefore, we also propose some improvement for the degradation of operating-speed.
    Finally, the detectability of LPT is mainly situated on the band of visible light that verified by the simulation of TCAD, so we try to add the mechanism called body-strapped base into LPT that raise the detective range of LPT still further. However, simulation and measurement showed that the responsivity of LPT with body-strapped base in the band of near infrared light doesn’t have apparently increase. Therefore, we find out the solution to restore the detectability of LPT with body-strapped base at the band of near infrared light by proposing the notion of setting the leakage path on the floating N-well.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 前言 1 1.1 研究背景與發展現況 1 1.2 研究動機 3 1.3 論文章節架構 4 第二章 光感測器原理及常用物理量簡介 5 2.1 二極體工作模式說明[8] 5 2.2 光二極體原理 6 2.3 光電晶體原理[9] 8 2.4 光感測器待測物理量簡介 10 2.4.1 暗電流(Dark current) 10 2.4.2 量子效率(Quantum efficiency) 12 2.4.3 響應度(Responsivity) 12 2.4.4 響應時間(Response time) 12 2.4.5 動態範圍(Dynamic Range) 14 2.4.6 元件雜訊(Device noise) 15 2.5 Body-strapped Base機制 16 第三章 元件架構設計與模擬 18 3.1 設計理念 18 3.2 元件架構與模擬說明 19 3.2.1 Lateral Phototransistor in standard CMOS process (LPT) 19 3.2.2 模擬結構與條件 22 3.3 電性模擬 24 3.3.1 基極摻雜濃度變異模擬 24 3.3.2 操作電壓模擬 27 3.4 光學模擬 28 3.4.1 吸收係數效應 28 3.4.2 結構物理特性分析 29 3.4.3 入射波長與光響應度關聯性 38 3.4.4 響應時間分析 41 3.5 元件佈局設計 45 第四章 量測結果與討論 50 4.1 晶片載板(PCB)設計 50 4.2 量測儀器介紹 51 4.3 量測環境與數據討論 52 4.3.1 雷射二極體光點量測與計算 53 4.3.2 I-V特性量測 55 4.3.3 I-V特性量測數據討論 56 4.3.4 線性度量測 76 4.3.5 線性度量測數據討論 76 4.3.6 直流響應量測 78 4.3.7 直流響應量測數據討論 79 4.3.8 響應時間量測 85 4.3.9 響應時間量測數據討論 87 4.4 文獻比較 89 第五章 結論與後續研究建議 90 參考文獻 92

    [1]Matthias Kalverkamp, Jannicke Baalsrud Hauge, Klaus-Dieter Thoben,“Logistics IoT Services Develpoment with a Sensor Toolkit in an Experiential Training Environment,”International Conference on Engineering, Technology and Innovation (ICE) & IEEE International Technology Management Conference, pp. 1-8, June 2013
    [2]Mengyuan Huang, Pengfei Cai, Su Li, Liangbo Wang, Tzung-I Su, Liyuan Zhao, Wang Chen, Ching-yin Hong and Dong Pan,“Breakthrough of 25Gb/s Germanium on Silicon Avalanche Photodiode,”Optical Fiber Communications Conference and Exhibition (OFC), March 2016
    [3]Gian-Franco Dalla Betta, Lucio Pancheri, David Stoppa, Robert Henderson and Justin Richardson in the book“Advances in Photodiodes”edited by Gian Franco Dalla Betta, ISBN 978-953-307-163-3, InTech, March 3, 2011
    [4]I. Orak, H. Korkut, N. Yildirim, A.Turut,“Illumination response on the electrical characterizations of Cr/n–GaAs/In photodiode,”Optik - International Journal for Light and Electron Optics, Volume 127, Issue 5, March 2016, Pages 3095
    [5]Omar A. Al-Hartomy, R.K. Gupta, Ahmed. A. Al-Ghamdi, F.Yakuphanoglu,“High performance organic-on-inorganic hybrid photodiodes based on organic semiconductor-graphene oxide blends,”Synthetic Metals, Volume 195, Pages 217-221, September 2014
    [6]Haike Zhu, Linjie Zhou, Xinwan Li, and Jianping Chen,“All-silicon near-infrared phototransistor based on surface-state absorption,”Opto-Electronics and Communications Conference (OECC), July 2015
    [7]Klaus Y. J. Hsu and Brett W. C. Liao,“High Responsivity Phototransistor with Body strapped Base in Standard SiGe BiCMOS Technology,”IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), June 2013
    [8]Albert H. Titus, Maurice C-K. Cheung and Vamsy P. Chodavarapu (2011). CMOS Photodetectors, Photodiodes - World Activities in 2011, Prof. Jeong Woo Park (Ed.), InTech, DOI: 10.5772/20194. Available from: https://www.intechopen.com/books/photodiodes-world-activities-in-2011/cmos-photodetectors
    [9]S. M. Sze, Physics of Semiconductor Devices, 2rd ed. John Wiley &Sons; 1981
    [10]Jiann S. Yuan, “SiGe,GaAs,and InP Heterojunction Bipolar Transistors. ”,John Wiley and Sons,Inc. 1999
    [11]Thierry Goudon, Vera Miljanović, and Christian Schmeiser,“On the Shockley–Read–Hall Model: Generation-Recombination in Semiconductors,”SIAM Journal on Applied Mathematics, Vol. 67, No. 4 (2007), pp. 1183-1201
    [12]http://blog.xuite.net/shaqweei/blog/60377246
    [13]http://www.pveducation.org/pvcdrom/absorption-coefficient
    [14]Hyo-Soon Kang, Myung-Jae Lee, and Woo-Young Choi,“Si avalanche photodetectors fabricated in standard complementary metal-oxide semiconductor process,”Appl. Phys. Lett. 90, 151118 (2007)
    [15]Myung-Jae Lee and Woo-Young Choi,“A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-bandwidth product,”OSA Publishing, Vol. 18, Issue 23, pp. 24189-24194 (2010)
    [16]Kyeong-Sik Shin, Kyeong-Kap Paek, Member, IEEE, Jung-Ho Park, Tae-Song Kim, Byeong-Kwon Ju, and Ji Yoon Kang, “Parasitic Bipolar Junction Transistors in a Floating-Gate MOSFET for Fluorescence Detection,” IEEE ELECTRON DEVICE LETTERS, vol. 28, no. 7, July 2007
    [17]Weiquan Zhang, Student Member, IEEE, Mansun Chan, Member, IEEE, Samuel K. H. Fung, Student Member, IEEE, and Ping K. Ko, Fellow, IEEE, “Performance of a CMOS Compatible Lateral Bipolar Phototransistor on SOI Substrate,” IEEE ELECTRON DEVICE LETTERS, vol. 19, no. 11, Nov 1998
    [18]Fernando de Souza Campos, Naser Faramarzpour, Ognian Marinov, Member, IEEE, M. Jamal Deen, Fellow, IEEE, and Jacobus W. Swart, Senior Member, IEEE, “Photodetection With Gate-Controlled Lateral BJTs from Standard CMOS Technology,” IEEE SENSORS JOURNAL, vol. 13, no. 5, May 2013
    [19]Ph. Cazenave, P. Fouillat, X. Montagner, H. Barnaby, R.D. Schrimpf, L. Bonora, J.P. David, A. Touboul, M.-C. Calvet, and P. Calvel,“Total dose effects on gate controlled lateral PNP bipolar junction transistors,”IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 45, NO. 6, Dec 1998
    [20]Hideaki YAMAMOTO, Kenji TANIGUCHI and Chihiro HAMAGUCHI, “High-Sensitivity SOI MOS Photodetector with Self-Amplification,” Jpn. J. Phys. vol. 35(1996), pp.1382-1386 part 1, no. 2B, Feb 1996
    [21]王俊凱。2013.03.04。用於ESD器件的隔離結構。中華人民共和國發明專利201310067437.2號
    [22]J. G. Su, H. M. Hsu, S. C. Wong, C. Y. Chang, T. Y. Huang, Y. C. Sun,“Improving the RF Performance of 0.18um CMOS With Deep N-Well Implantation,”IEEE ELECTRON DEVICE LETTERS, 22, 10(2001)
    [23]A. Giraldo, A. Paccagnella, A. Minzoni,“Aspect ratio calculation in n-channel MOSFETs with a gate-enclosed layout,”Solid-State Electronics, Volume 44, Issue 6, 1 June 2000, Pages 981-989 (2000)
    [24]Jader A. De Lima and Salvador P. Gimenez,“A Novel Overlapping Circular-Gate Transistor and its Application to Power MOSFETs,”ECS Trans. 2009, volume 23, issue 1, 361-369
    [25]Arianna Tibuzzi, Gian-Franco Dalla Betta, Claudio Piemonte, Corrado Di Natale, Arnaldo D’Amico, Giovanni Soncini,“High gain bipolar junction phototransistors with finger-shaped emitter for improved optical gas sensing in the blue spectral region,”Sensors and Actuators A: Physical, Volume 136, Issue 2, Pages 588-596, 16 May 2007,
    [26]張雅森,“具有Body-strapped Base的雙極光電晶體特性研究,”國立清華大學, 電子工程研究所, 碩士論文, 中華民國一百零六年一月
    [27]Weiquan Zhang, Student Member, IEEE, Mansun Chan, Member, IEEE, and Ping K. Ko, Fellow, IEEE, “Performance of the Floating Gate/Body Tied NMOSFET Phototransistor on SOI Substrate,” IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 47, no.7, Jul 2000
    [28]Yu-Wei Chang, Yang-Tung Huang, Member, IEEE,“The Ring-Shaped CMOS-Based Phototransistor With High Responsivity for the UV/Blue Spectral Range,”IEEE Photonics Technology Letters, Vol.21, Issue.13, July1, 2009
    [29]Weiquan Zhang, Member, IEEE, Mansun Chan, Senior Member, IEEE,“A high gain n-well/gate tied PMOSFET image sensor fabricated from a standard CMOS process, ”IEEE Transactions on Electron Devices, Vol.48, Issue.6, Jun 2001
    [30]Xin Liu, Shuxu Guo, Chen Zou, Guotong Du, Yuqi Wang, Yuchun Chang, Member, IEEE,“Punchthrough Enhanced Phototransistor Fabricated in Standard CMOS Process, ”IEEE Electron Device Letters, Vol.30, Issue.3, March 2009

    QR CODE