簡易檢索 / 詳目顯示

研究生: 吳哲瑋
Wu, Zhe-Wei
論文名稱: 連續式電漿輔助化學氣相沉積之微晶矽薄膜製程研究與電漿放射光譜量測分析
Optical Emission Spectroscopy Diagonostics of In-line Plasma Enhanced Chemical Vapor Deposition for Microcrystalline Silicon Thin Films Deposition
指導教授: 柳克強
Leou, Keh-Chyang
口試委員: 王敏全
吳永俊
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 134
中文關鍵詞: 微晶矽薄膜電漿放射光譜薄膜太陽能電池
外文關鍵詞: microcrystalline silicon thin films, optical emission spectroscopy, thin film solar cells
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   微晶矽薄膜太陽能電池可以減少矽原料的使用,且能沉積在價格低廉的玻璃、不鏽鋼和塑膠基板上,因此能大幅降低材料成本。微晶矽在近紅外光的吸收係數較低,所以需要較厚的薄膜厚度(1~3 m) 來增加吸收,如何提升微晶矽薄膜的沉積速率並維持良好的結晶度與光敏性是重要的議題。而薄膜成長特性與其材料結構與光電特性,主要由製程時電漿中的粒子、自由基等所掌控,因此電漿特性之量測分析對了解電漿變化與薄膜特性之關聯性極有助益。
      本研究主旨為發展連續式電漿輔助化學氣相沉積(In-line PECVD) 成長微晶矽薄膜之相關製程技術,作為矽薄膜太陽能電池的I-layer之應用。同時藉由光學放射光譜儀(OES) 量測電漿放射光譜,建立電漿光譜隨製程參數如射頻功率、氫稀釋比及氣體壓力變化的關係。並量測沉積薄膜的材料結構與電特性,探討電漿中反應物種濃度變化對於薄膜材料結構及電特性之影響。
      研究發現不論是改變矽甲烷硫量、射頻功率或氣體壓力,c-Si:H薄膜結晶度都隨OES-ratio(H/SiH*, H/SiH*) 上升而增加,且光敏性與OES-ratio有相反趨勢。說明了氫原子濃度比例越高,薄膜會趨向高結晶,然而暗電導的提升也造成光敏性下降。另一方面,薄膜沉積速率與前驅物SiH3濃度有密切關係,OES以特徵譜線SiH*代表SiH3之變化。在改變氫稀釋比及氣體壓力的實驗,沉積速率與SiH*之強度變化有相同趨勢。然而在改變射頻功率時,沉積速率與SiH*並無明顯規律。經由上述研究分析,In-line PECVD可以在高功率(600 W)、高壓(4 torr) 及高矽甲烷流量(2.44 %) 的條件下成長c-Si:H薄膜,且結晶度38 %、光敏性3.94 × 102,已達到元件要求。N-P layer在商業機台ULVAC成長,搭配In-line PECVD之c-Si:H薄膜最佳化條件所製作的電池效率為1.68 %;然而若N-I-P layer皆在In-line PECVD製作,效率可達2.27 %。由結果推論在In-line PECVD製作可以避免薄膜接觸到空氣,減少氧化的機率,因此電池效率可以獲得較大的提升。


      The hydrogenated microcrystalline silicon(c-Si:H) thin film solar cells can reduce silicon material, and deposited on low-cost substrate like glass, stainless steel or plastics. Therefore it significantly reduce the material cost. The absorption of c-Si:H thin films at near-infrared light is lower, so c-Si:H need thicker film(1~3 m) to enhance absorption. How to increase deposition rate c-Si:H thin films, simultaneously maintain good crystalline volume fraction(XC) and photosensitivity is very importance problem. The free radicals and particles in plasma will affect the material and photoelectric properties of c-Si:H thin films. Thus the correlation between process parameters and properties of films are demonstrated in this thesis.
      Purpose of this study is develop process for c-Si:H thin films by In-line plasma enhanced chemical vapor deposition(In-line PECVD). The glow of the plasma associated with properties of films is detected by optical emission spectroscopy(OES). The experiment results found that whether it is varying the silane concentration, RF power or gas pressure, the XC increase with OES-ratio(H/SiH*, H/SiH*), and the photosensitivity decrease as OES-ratio increase. It is say that higher hydrogen atom density will increase XC of films, but dark conductivity enhancement also cause photosensitivity decreased. Currently, In-line PECVD can deposited c-Si:H thin film which XC = 38% and photosensitivity = 3.94 × 102 at high power(600 W), high pressure(4 torr) and high silane concentration(2.44%). The N-P layer deposited in ULVAC and c-Si:H I-layer in In-line PECVD, the cell efficiency is 1.68%. But if the N-I-P layer all deposited in In-line PECVD, the cell efficiency achieve 2.27%. From the result, all in In-line PECVD manufacture can prevent air contamination, therefore the cell efficiency can be large improve.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 表目錄 vii 圖目錄 ix 第一章 引言 1 1.1 研究動機 3 1.2 研究目的 4 第二章 文獻回顧 5 2.1 In-line PECVD 5 2.2 OES-ratio(Ha/SiH*) 與結晶度(Xc) 之關聯性 7 2.3 OES-ratio(Ha/SiH*、Hb/SiH*) 與光敏性(photosensitivity) 之關聯性 10 2.4 OES監測電子密度及電子溫度 11 2.5 預氫氣輝光(pre-hydrogen glow) 之影響 12 2.6 結論 14 第三章 基本原理 15 3.1 電漿原理 15 3.2 平行板電容耦合電漿源(Capacitive Coupled Plasma, CCP) 15 3.3 SiH4/H2電漿之化學反應 16 3.3.1 主要反應(primary reaction) 16 3.3.2 次要反應(secondary reaction) 17 3.4 微晶矽薄膜成長機制 18 3.4.1 表面擴散模型(surface-diffusion model) 19 3.4.2 蝕刻模型(etch model) 19 3.4.3 化學退火模型(chemical-annealing model) 20 3.5 電漿光譜原理 21 3.6 光學放射光譜儀(OES) 量測原理 22 第四章 研究方法與實驗設備 23 4.1 研究方法 23 4.2 實驗設備與分析方法 25 4.2.1 連續式電漿輔助化學氣相沉積(In-line PECVD) 25 4.2.2 基板的選擇與清洗 26 4.2.3 光學放射光譜儀(OES) 27 4.2.3.1 光譜儀放射光強度校正 28 4.2.3.2 放射光譜之曲線擬合 28 4.2.3.3 放射光譜分析方法比較 32 4.2.4 拉曼光譜儀(Raman spectroscopy) 36 4.2.4.1 拉曼光譜之曲線擬合 37 4.2.5 薄膜厚度-Film Tek 2000 39 4.2.6 結晶方向(crystal orientations) 與晶粒大小(grain size) 39 4.2.7 銀電極-sputter 39 4.2.8 光敏性(photosensitivity) 40 第五章 研究結果與討論 42 5.1 矽甲烷流量比例之影響 42 5.1.1 SiH4/H2電漿光譜隨時變 43 5.1.2 SiH4/H2電漿放射光譜強度變化分析 45 5.1.3 結晶度與OES-ratio(Ha/SiH*, Hb/SiH*) 之關聯性 47 5.1.4 光敏性與OES-ratio(Ha/SiH*, Hb/SiH*) 之關聯性 49 5.1.5 沉積速率與SiH*強度之關聯性 51 5.2 射頻功率之影響 53 5.2.1 SiH4/H2電漿光譜隨時變 53 5.2.2 SiH4/H2電漿放射光譜強度變化分析 56 5.2.3 結晶度與OES-ratio(Ha/SiH*, Hb/SiH*) 之關聯性 58 5.2.4 光敏性與OES-ratio(Ha/SiH*, Hb/SiH*) 之關聯性 60 5.2.5 沉積速率與SiH*強度之關聯性 62 5.3 氣體壓力之影響 63 5.3.1 SiH4/H2電漿光譜隨時變 63 5.3.2 SiH4/H2電漿放射光譜強度變化分析 66 5.3.3 結晶度與OES-ratio(Ha/SiH*, Hb/SiH*) 之關聯性 68 5.3.4 光敏性與OES-ratio(Ha/SiH*, Hb/SiH*) 之關聯性 70 5.3.5 沉積速率與SiH*強度之關聯性 72 5.4 微晶矽薄膜太陽能電池 73 5.4.1 Only I-layer in In-line PECVD 73 5.4.1.1 非晶矽阻擋層之影響 74 5.4.1.2 I-layer厚度之影響 76 5.4.2 N-I-P layer all in In-line PECVD 78 第六章 結論 82 參考文獻 84 附錄A 87 A.1 電漿放射光譜分析數據 87 A.2 拉曼光譜分析數據 96 A.3 光/暗電導之分析 107 附錄B 120 B.1 單點peak強度與先fitting再平均之比較 120 B.2 ULVAC之SiH4/H2電漿放射光譜 131

    [1] A. V. Shah, et al., "Thin-film silicon solar cell technology," Progress in Photovoltaics, vol. 12, pp. 113-142, Mar-May 2004.
    [2] J. M. Shieh, "Materials and devices in Si-based solar cells," National Chiao Tung University lecture note, 2011.
    [3] O. Vetterl, et al., "Intrinsic microcrystalline silicon: A new material for photovoltaics," Solar Energy Materials and Solar Cells, vol. 62, pp. 97-108, Apr 2000.
    [4] N. Martins, et al., "Performances of an in-line PECVD system used to produce amorphous and nanocrystalline silicon solar cells," Thin Solid Films, vol. 511, pp. 238-242, Jul 2006.
    [5] U. Fantz, "Spectroscopic diagnostics and modelling of silane microwave plasmas," Plasma Physics and Controlled Fusion, vol. 40, pp. 1035-1056, Jun 1998.
    [6] P. Torres, et al., Deposition of thin-film silicon for photovoltaics: Use of VHF-GD and OES. New York: Begell House, Inc, 1999.
    [7] Z. M. Wu, et al., "Analysis. on pressure dependence of microcrystalline silicon by optical emission spectroscopy," Physica E-Low-Dimensional Systems & Nanostructures, vol. 33, pp. 125-129, Jun 2006.
    [8] Y. L. Chang, "Parameter Study of Microcrystalline Silicon Thin Films Deposition by Plasma Enhanced Chemical Vapor Deposition Using Plasma Optical Emission Spectroscopy," Master Thesis, Department of Engineering and System Science, National Tsing Hua University, 2010.
    [9] V. Massereau-Guilbaud, et al., "Determination of the electron temperature by optical emission spectroscopy in a 13.56 MHz dusty methane plasma: Influence of the power," Journal of Applied Physics, vol. 106, Dec 2009.
    [10] Y. Sobajima, et al., "Gas-temperature control in VHF-PECVD process for high-rate (> 5 nm/s) growth of microcrystalline silicon thin films," in Physica Status Solidi C - Current Topics in Solid State Physics, Vol 7 No 3-4. vol. 7, R. E. I. Schropp, Ed., ed Weinheim: Wiley-V C H Verlag Gmbh, 2010, pp. 521-524.
    [11] M. Kondo and A. Matsuda, "Low temperature growth of microcrystalline silicon and its application to solar cells," Thin Solid Films, vol. 383, pp. 1-6, Feb 2001.
    [12] X. D. Zhang, et al., "A pre-hydrogen glow method to improve the reproducibility of intrinsic microcrystalline silicon thin film depositions in a single-chamber system," Solar Energy Materials and Solar Cells, vol. 95, pp. 2448-2453, Aug 2011.
    [13] B. Chapman, "Glow Discharge Process - sputtering and plasma etching," 1980.
    [14] A. Matsuda, "Microcrystalline silicon. Growth and device application," Journal of Non-Crystalline Solids, vol. 338, pp. 1-12, Jun 2004.
    [15] A. Matsuda, "FORMATION KINETICS AND CONTROL OF MICROCRYSTALLITE IN MU-C-SI-H FROM GLOW-DISCHARGE PLASMA," Journal of Non-Crystalline Solids, vol. 59-6, pp. 767-774, 1983.
    [16] C. C. Tsai, et al., "CONTROL OF SILICON NETWORKS STRUCTURE IN PLASMA DEPOSITION," Journal of Non-Crystalline Solids, vol. 114, pp. 151-153, Dec 1989.
    [17] K. Nakamura, et al., "ROLES OF ATOMIC-HYDROGEN IN CHEMICAL ANNEALING," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 34, pp. 442-449, Feb 1995.
    [18] M. A. Lieberman and A. J. Lichtenberg, "Principles of Plasma Discharges and Materials Processing," 2005.
    [19] F. W. Gu, "Study of a capacitively coupled silane/hydrogen discharge by computer simulation - physical/chemical mechanism and parametric analysis," Master Thesis, Department of Engineering and System Science, National Tsing Hua University, 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE