研究生: |
洪詩雅 Hung, Shih-Ya |
---|---|
論文名稱: |
在微流道中以介電泳方式操控包裹細胞的液珠 Manipulation of Cell Encapsulating Droplets in Microfluidic Systems Using Dielectrophoresis |
指導教授: |
陳致真
Chen, Chih-Chen |
口試委員: |
吳嘉哲
許佳賢 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 72 |
中文關鍵詞: | 微流道 、微液珠 、介電泳 、單一細胞 |
外文關鍵詞: | microfluidics, dielectrophoresis, microdroplet, single cell |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統上的細胞研究通常是針對一群的細胞觀察其行為或是對某些化學物質的反應後,取平均值來作為此種細胞的特性;但隨著科技的進步,科學家們發現細胞和人一樣,群體化的觀察只能得到一個客觀的現象,若將每個細胞獨立培養,其行為表象會與群聚培養時有很大的不同。因此,為了對細胞的行為有更深入的研究,觀察單一細胞的行為和對藥物的反應,逐漸成為現今的研究趨勢。
微液珠技術可以將細胞或生化物質包裹於微升或奈升的液珠中,用以觀察及操控。若適當地與其他系統整合,則可擴大其應用範圍,包括物質混合、對細胞的篩檢、藥物檢測以及細胞培養觀察等。由於生成微液珠的微流道尺寸非常小,微液珠所需的檢體量或藥劑量相較傳統減少許多,即在有限的成本及藥品內,利用微液珠技術能夠進行更多次甚至更多元的實驗,且產生的實驗相關廢液也同樣減少。
目前已有許多研究利用微液珠技術生成包裹單一細胞的液珠,進行對單一細胞的觀察,但在生成液珠時,細胞的包裹率會呈現布瓦松分布(Poisson distribution),即使細胞濃度再高,也會產生一定程度的空液珠。因此本研究提出一個想法,希望可以設計一個晶片,在生成液珠後對液珠進行篩選,根據液珠中所包裹細胞的數目進行分類。
本研究成功地利用介電泳方式使液珠和包裹有乳膠粒子的液珠在移動路徑上有所區別,但目前區別仍不足以將兩者分離,未來將會改變電極設計,強化其差異性,以期能夠將多種液珠一次分性分離。
Conventionally, we studied the reaction of a group of cell to a certain stimulation and define it as the behaviour of the cell line. However, with the rapid development of technology, scientists had discovered that the behaviour of a single cell could be dramatically different from that of a cell cultured in a group. As a result, more and more researches nowadays focus on the study of single cell.
Microfluidics is a promising platform for research in objects of micro- or nano- scale. It could be integrated with other electrical, mechanical, or optical systems for the use in research, such as cell sorting, cell isolation, drug screening, and mixing.
Scientists have been isolating single cell in droplets with microfluidics for years. However, owing to Poisson statistics, there is still a certain amount of empty droplets. Thus, we proposed a design to increase the efficiency of isolating single cell. We encapsulate cells in droplets and then manipulate these droplets with dielectrophoresis based on the number of cells encapsulating. We have observed the difference in deflection between empty droplets and droplets encapsulating bead. Still, we are working on enhancing the efficiency of manipulation
1 Shields, C. W. t., Reyes, C. D. & Lopez, G. P. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 15, 1230-1249, doi:10.1039/c4lc01246a (2015).
2 Kemna, E. W. et al. High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel. Lab Chip 12, 2881-2887, doi:10.1039/c2lc00013j (2012).
3 Lagus, T. P. & Edd, J. F. High throughput single-cell and multiple-cell micro-encapsulation. J Vis Exp, e4096, doi:10.3791/4096 (2012).
4 Clausell-Tormos, J. et al. Droplet-based microfluidic platforms for the encapsulation and screening of Mammalian cells and multicellular organisms. Chem Biol 15, 427-437, doi:10.1016/j.chembiol.2008.04.004 (2008).
5 Nisisako, T., Torii, T. & Higuchi, T. Droplet formation in a microchannel network. Lab Chip 2, 24-26, doi:10.1039/b108740c (2002).
6 Anna, S. L., Bontoux, N. & Stone, H. A. Formation of dispersions using “flow focusing” in microchannels. Applied Physics Letters 82, 364-366, doi:10.1063/1.1537519 (2003).
7 Gossett, D. R. et al. Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397, 3249-3267, doi:10.1007/s00216-010-3721-9 (2010).
8 Mazutis, L. & Griffiths, A. D. Preparation of monodisperse emulsions by hydrodynamic size fractionation. Applied Physics Letters 95, 204103, doi:10.1063/1.3250432 (2009).
9 Di Carlo, D., Irimia, D., Tompkins, R. G. & Toner, M. Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci U S A 104, 18892-18897, doi:10.1073/pnas.0704958104 (2007).
10 Al‐Hetlani, E. et al. Sorting and Manipulation of Magnetic Droplets in Continuous Flow. AIP Conference Proceedings 1311, 167-175, doi:10.1063/1.3530008 (2010).
11 Ling, S. H., Lam, Y. C. & Chian, K. S. Continuous cell separation using dielectrophoresis through asymmetric and periodic microelectrode array. Anal Chem 84, 6463-6470, doi:10.1021/ac300079q (2012).
12 Moon, H. S. et al. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Lab Chip 11, 1118-1125, doi:10.1039/c0lc00345j (2011).
13 Kang, Y., Li, D., Kalams, S. A. & Eid, J. E. DC-Dielectrophoretic separation of biological cells by size. Biomed Microdevices 10, 243-249, doi:10.1007/s10544-007-9130-y (2008).
14 Niu, X., Zhang, M., Peng, S., Wen, W. & Sheng, P. Real-time detection, control, and sorting of microfluidic droplets. Biomicrofluidics 1, 44101, doi:10.1063/1.2795392 (2007).
15 Piacentini, N., Mernier, G., Tornay, R. & Renaud, P. Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation. Biomicrofluidics 5, 34122-341228, doi:10.1063/1.3640045 (2011).
16 Qian, C. et al. Dielectrophoresis for bioparticle manipulation. Int J Mol Sci 15, 18281-18309, doi:10.3390/ijms151018281 (2014).
17 Martinez-Duarte, R. Microfabrication technologies in dielectrophoresis applications--a review. Electrophoresis 33, 3110-3132, doi:10.1002/elps.201200242 (2012).
18 Wang, L. et al. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Electrophoresis 30, 782-791, doi:10.1002/elps.200800637 (2009).
19 Rao, L. et al. One-step fabrication of 3D silver paste electrodes into microfluidic devices for enhanced droplet-based cell sorting. AIP Advances 5, 057134, doi:10.1063/1.4921317 (2015).
20 Cheng, I. F., Froude, V. E., Zhu, Y., Chang, H. C. & Chang, H. C. A continuous high-throughput bioparticle sorter based on 3D traveling-wave dielectrophoresis. Lab Chip 9, 3193-3201, doi:10.1039/b910587e (2009).
21 Tahsin Guler, M., Bilican, I., Agan, S. & Elbuken, C. A simple approach for the fabrication of 3D microelectrodes for impedimetric sensing. Journal of Micromechanics and Microengineering 25, 095019, doi:10.1088/0960-1317/25/9/095019 (2015).
22 Shafiee, H., Sano, M. B., Henslee, E. A., Caldwell, J. L. & Davalos, R. V. Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP). Lab Chip 10, 438-445, doi:10.1039/b920590j (2010).
23 Salmanzadeh, A., Elvington, E. S., Roberts, P. C., Schmelz, E. M. & Davalos, R. V. Sphingolipid metabolites modulate dielectric characteristics of cells in a mouse ovarian cancer progression model. Integr Biol (Camb) 5, 843-852, doi:10.1039/c3ib00008g (2013).
24 Salmanzadeh, A. et al. Isolation of prostate tumor initiating cells (TICs) through their dielectrophoretic signature. Lab Chip 12, 182-189, doi:10.1039/c1lc20701f (2012).
25 Demierre, N. et al. Characterization and optimization of liquid electrodes for lateral dielectrophoresis. Lab Chip 7, 355-365, doi:10.1039/b612866a (2007).
26 Bhattacharjee, N., Horowitz, L. F. & Folch, A. Continuous-flow multi-pulse electroporation at low DC voltages by microfluidic flipping of the voltage space topology. Appl Phys Lett 109, 163702, doi:10.1063/1.4963316 (2016).
27 Pethig, R. Review article-dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4, doi:10.1063/1.3456626 (2010).
28 Pohl, H. A. The Motion and Precipitation of Suspensoids in Divergent Electric Fields. Journal of Applied Physics 22, 869-871, doi:10.1063/1.1700065 (1951).
29 Cheng, I.-F. Light-Induced Dielectrophoresis for the Applications on Dynamic and Passive Continuous Separation of Microparticles. Nano Communication 19, 38-45 (2012).
30 Silva Santisteban, T., Zengerle, R. & Meier, M. Through-holes, cavities and perforations in polydimethylsiloxane (PDMS) chips. RSC Adv. 4, 48012-48016, doi:10.1039/c4ra09586c (2014).
31 Baret, J. C. Surfactants in droplet-based microfluidics. Lab Chip 12, 422-433, doi:10.1039/c1lc20582j (2012).
32 Wang, S. F. et al. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem Biophys Res Commun 451, 208-214, doi:10.1016/j.bbrc.2014.07.090 (2014).
33 Henry, E. et al. Sorting cells by their dynamical properties. Sci Rep 6, 34375, doi:10.1038/srep34375 (2016).